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1 INTRODUCTION 

This document presents generic EMTP models for Photovoltaic (PV) Park that can be used for 

stability analysis and interconnection studies. 

Interconnecting a large-scale PV into the bulk power system has become a more important issue 

due to its significant impact on power system transient behavior. Failure to perform proper 

interconnection studies could lead to not only non-optimal designs and operations of PVs, but also 

severe power system operation and even stability problems. Manufacturer-specific models of PVs are 

typically favored for the interconnection studies due to their accuracy. However, these PV models have 

been typically delivered as black box model and their usage is limited to the terms of nondisclosure 

agreement. Utilities and project developers require accurate generic PV models to perform the 

preliminary grid integration studies before the actual design of the PV park is decided. Accurate generic 

PV park models will also enable the researchers to identify the potential PV grid integration issues and 

propose necessary countermeasures properly. 

This PV park model is aggregated, the collector grid and the PV inverters are represented with 

their aggregated models. However, the model includes the park controller to preserve the overall control 

structure in the PV park. The inverters and the park control systems include the necessary 

nonlinearities, transient and protection functions to simulate the accurate transient behavior of the park 

to the external power system disturbances. 
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2 Model description 

The EMT model presented in this document do not include the park transformer OLTC and any 

reactive power compensation device (such as Static VAR Compensator). 

2.1 General 

2.2 PV module 

2.2.1 Parameters 

This report presents the modeling of PV arrays in EMTP just by using the manufacturer’s datasheet.  

The model is an equivalent electrical circuit with one nonlinear diode as illustrated in Figure 1: 

 

Figure 1  Equivalent circuit of a PV array 

The electrical parameters of the components in the equivalent circuit are not readily available in 

datasheets. This report explains how to obtain the parameters using the datasheet information only and 

without performing any physical experiments.  

First, the available information in datasheets, useful for the computation of parameters, is defined: 

maxP : Maximum power 

maxPV : Voltage at maximum power 

maxPI : Current at maximum power 

ocV : Open circuit voltage 

scI : Short circuit current 

iK : Temperature coefficient of short circuit current 

vK : Temperature coefficient of open circuit voltage 

sN : Number of cells per module (in series) 

All these data are given for standard test conditions, obtained at a temperature of 25°C and for an 

irradiance of 1000 W/m². 

 225      1000  /ref refT C G W m=  =  

One last data which is defined indirectly by the datasheet is the ideal factor a . This factor depends on 

the PV cell technology. A table in [1] gives the value of ideal factor for different PV technologies. This 

factor also varies with the irradiance [2], but the variation is low and it is considered constant in our 

model. 

Finally, the actual atmospheric conditions are required: temperatureT and irradianceG . Temperature 

is considered constant during time domain simulations given the time frame of typical EMT-type studies. 

The irradiance, however, can be constant or variable as defined by the user. More details are given at 

the end this document. 

The relation between PVI  and PVV  in Figure 1  is given by: 
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 s
ph diode

PV PV
PV

p

V I R
I I I

R

+
= − −  (1) 

where diodeI is the current flowing through the diode, sR is the series resistance and pR is the parallel 

resistance. 

The next part explains how to obtain these electrical parameters. 

2.2.2 Diode parameters 

First, diode parameters need to be calculated using the standard conditions data (usually an irradiance 

of 1000 W/m2 and a temperature of 25°C). 

 0 exp 1diode
diode

th

V
I I

aV

  
= −  

   

 (2) 

where 

 PV PV s
diode

s

V I R
V

N

+
=  (3) 

The division by sN is because we consider the diode for only one cell. As there are sN cells in series, 

the voltage is equally divided on the sN diodes. 

The threshold voltage is:  

 
ref

th

kT
V

q
=  (4) 

where k is the Boltzmann’s constant, q the charge of an electron and refT the reference temperature in 

Kelvin. 

And the reversed saturation current is: 

 0

exp 1

sc

oc

s th

I
I

V

aN V

=
 

− 
 

 (5) 

From this, equation (1) becomes: 

 0  exp 1PV PV s PV PV s
PV ph

p s th

V I R V I R
I I I

R aN V

  + +
= − − −  

   

 (6) 

In this equation there are still three unknown variables: phI , sR and pR . 

To obtain these values the equations described in [3] are used.  The equations are, however, solved 

here in a different way. 

The goal here is to express phI  and pR in function of sR . In such a case only one unknown variable 

remains, and the non-linear equation obtained can be solved with a numerical method. 

Equation (6) is taken in maximum power conditions (voltage and current are given in datasheet) and 

from it a function f in function of sR is defined: 

 0( )   exp 1maxP maxP s maxP maxP s
s ph maxP

p s th

V I R V I R
f R I I I

R aN V

  + +
= − − − −  

   

 (7) 

The objective here is to find such an sR  that the function f becomes zero.  

2.2.3 Definition of 𝑹𝒑 

To obtain this resistance another equation is required. The derivative of power with respect to voltage 

is used here. In maximal power condition, this derivative is zero. 
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= = = +  
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From (6) the derivative is calculated and taken in maximal power condition: 

 
0
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maxP maxP s
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 (9) 

Equation (9) is inserted into (8) and pR is isolated: 

 
0

1

exp

p

maxP maxP maxP s
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V R I aN V aN V
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 (10) 

2.2.4 Definition of 𝑰𝒑𝒉 

As under short circuit conditions the voltage is low, the current flowing through the diode is negligible. 

In this case, there are only two resistances to be considered. As the short-circuit current is the one 

flowing in sR we have: 

 
p

sc ph
s p

R
I I

R R
=

+
 (11) 

 1
s p s

ph sc sc
p p

R R R
I I I

R R

 +
= = + 

 
 

 (12) 

By replacing pR with (10): 

 01
1 exp maxP maxP s

ph sc s
maxP s th s th

s
maxP

I V I R
I I R

V aN V aN V
R

I

  
   +
  = + −  
   −  

  

 (13) 

After simplification: 

 0 expmaxP s maxP maxP s
ph sc

maxP s maxP s th s th

V I R V I R
I I

V R I aN V aN V

  +
= −  

−   

 (14) 

2.2.5 Final Solution 

 

The parallel resistance and the current source are now defined as a function of the series resistance. 

Equations (10) and (14) are inserted into (7): 
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This expression is simplified to: 

 

( )
( )

( )

0 0

0

2

 exp

maxP sc maxP maxP s
s

maxP s maxP

s maxP sc maxP s thmaxP maxP s

s th s th

V I I I I I R
f R

V R I

R I I V aN VV I R
I

aN V aN V

+ − −
=

−

 − + − +
+    

   

 (16) 

 

The goal is to find the value of sR such that f equals to zero. To solve this non-linear equation, Newton 

method is used. As this function crosses zero several times, a specific interval has to be chosen. Newton 

method can be used because f and f  are both strictly positive on the studied interval:
 max0; ][ sR − .

 

maxsR −  is defined as: 

 
0

expoc maxP s th oc
s max

maxP s th

V V aN V V
R

I I aN V
−

 − −
= −  

 
 (17) 

Here is an example of the behaviour of )( sf R on max0; ][ sR − for a specific photovoltaic module 

(KC200GT Kyosera).  

 

Figure 2 Behaviour of f(Rs) on studied interval 

 

To use Newton method the derivative of the function is required: 
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As f  is positive, initialization is done with the maximum value: 

 0
s s maxR R −=  (19) 

The iterative procedure is: 

 1

'

( )

( )

i
i i s
s s i

s

f R
R R

f R

+ = −  (20) 

And it is stopped when the variation is below the tolerance  : 

 1i i
s sR R +−   (21) 

 

Once the iterative procedure yields the final value of
i
sR , it is possible to compute pR and phI  using 

equations (10) and (14). 
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As previous calculations were done under standard conditions, the current of the current source is 

abbreviated with 0phI . 

Parameters are now calculated for the actual atmospheric conditions: 

 th

kT
V

q
=  (22) 

 0

( )

( )
exp 1

sc i ref

oc v ref

s th

I K T T
I

V K T T

aN V

+ −
=

+ − 
− 

 

 (23) 

 ( )_ 0ph T ph i refI I K T T= + −  (24) 

 _ph ph T
ref

G
I I

G
=  (25) 

Here we have the parameters for the given conditions but for only one photovoltaic module. The total 

number of modules is calculated using the nominal DC voltage and the given output power of the plant. 

                 
plantDC

mod s mod p
maxP DC maxP

PV
N N

V V I
− −= =  (26) 

where mod pN − is the number of module in parallel and mod sN − the number of module in series in the 

plant. 

Parameters are updated for the last time: 

 _  ph tot ph mod pI I N −=  (27) 

 _ _                           mod s mod s
s tot s p tot p

mod p mod p

N N
R R R R

N N

− −

− −

= =  (28) 

 0_ 0 _                              tot mod p s tot s mod sI N I N N N− −= =  (29) 

 0 _
_

exp diodes
diodes tot

s tot th

V
I I

aN V

 
=  

 
 

 (30) 

 

Subscript “tot” is used to indicate that it is the final value that will be used in the model. 

All electrical parameters are sent into the circuit.  

3 Electrical circuit 

The EMTP circuit is presented in Figure 3. 

As the diode is a non-linear device, it is moved inside the control block, so the current source showed 

in Figure 3 represents the photoelectric current source in parallel with the diode. 
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Figure 3 Equivalent electrical circuit of PV park 

The control block calculates the current from photoelectric cells and the current flowing through the 

diode. Then the diode current is subtracted from photoelectric current, and the resulting current drives 

the controlled current source in Figure 3. 

Figure 4 presents the subcircuit which calculates the photovoltaic current as a function of irradiance 

with respect to (25) and the diode current as a function of the diode voltage using (30). The irradiance 

can be varied from outside of the PV park device. The temperature is considered constant during the 

simulation. 

An option to force the DC link voltage to a nominal value is available. In this case, the PV cell device is 

an ideal voltage source. 

 

Figure 4 Current source subcircuit 

 

3.1 Reactive Power Control in PV Parks  

The active power at the point of interconnection depends on the weather conditions. However, 

according to customary grid code requirements, the PV park should have a central PV park controller 

(PVPC) to control the reactive power at POI. 

The PV park reactive power control is based on the secondary voltage control concept [9]. At 

primary level, the inverter controller monitors and controls its own positive sequence terminal voltage (
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) with a proportional voltage regulator. At secondary level, the PVPC monitors the reactive power 
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at POI ( POIQ ) and control it by modifying the PV inverters reference voltage values (V  ) via a 

proportional-integral (PI) reactive power regulator as shown in Figure 5. In Figure 5 and hereafter, all 

variables are in pu (unless opposite is stated) and the apostrophe sign is used to indicate the reference 

values coming from the controllers. 

A Q(V) mode is available where the Q-reference is function of the voltage. 

Although not shown in Figure 5, the PVPC may also contain voltage control (V-control) and power 

factor control (PF-control) functions. When PVPC is working under V-control function, the reactive 

power reference in Figure 5 ( POIQ ) is calculated by an outer proportional voltage control, i.e. 

 ( )POI Vpoi POI POIQ K V V += −  (31) 

where POIV +
 is the positive sequence voltage at POI and VpoiK  is the PVPC voltage regulator gain. 

When PVPC is working under PF-control function, POIQ  is calculated using the active power at 

POI ( POIP ) and the desired power factor at POI ( POIpf ). 

When a severe voltage sag occurs at POI (due to a fault), the PI regulator output ( U  ) is kept 

constant by blocking the input ( POI POIQ Q − ) to avoid overvoltage following the fault removal. 

 

 

Figure 5  Reactive power control at POI (Q-control function) 

3.2 PV inverter control and protection systems 

The considered topology is shown in Figure 6. It uses a dc-ac converter system consisting of a 

voltage source converter (VSC) on the grid side (GSC: Grid Side Converter). The dc resistive chopper 

is used for the dc bus overvoltage protection. A line inductor (choke filter) and an ac harmonic filter are 

used at the GSC to improve the power quality. 
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Figure 6  PV park configuration 

The simplified diagram of PV inverter control and protection system is shown in Figure 7. The 

sampled signals are converted to per unit and filtered at “Measurements & Filters” block. The input 

measuring filters are low-pass (LP) type.  

- “Compute Variables” block computes the variables used by the PV inverter control and 

protection system.  

- “Protection System” block contains low voltage and overvoltage relays, GSC overcurrent 

protections and dc resistive chopper control.  

The control of the PV inverter is achieved by controlling the GSC utilizing vector control techniques. 

Vector control allows decoupled control of real and reactive powers. The currents are projected on a 

rotating reference frame based on either ac flux or voltage. Those projections are referred to d- and q- 

components of their respective currents. In flux-based rotating frame, the q-component corresponds to 

real power and the d-component to reactive power. In voltage-based rotating frame (900 ahead of flux-

based frame), the d and q components represent the opposite. 

The control scheme is illustrated in Figure 8. In this figure, qgi  and dgi  are the q- and d-axis 

currents of the GSC, dcV  is the dc bus voltage, and wtV
+

 is the positive sequence voltage at PV park 

transformer MV terminal. 

In the control scheme presented in Figure 8, the GSC operates in the stator voltage reference 

(SVR) frame. dgi  is used to maintain dcV  and qgi  is used to control wtV
+

. 

The GSC is controlled by a two-level controller. The slow outer control calculates the reference dq-

frame currents ( dgi  and qgi ) and the fast inner control allows controlling the converter ac voltage 

reference that will be used to generate the modulated switching pattern.  

The reference for the positive sequence voltage at FSC transformer MV terminal (V  ) is calculated 

by the PVPC (see Figure 5). 
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Figure 7  Simplified diagram of inverter control and protection system 

 

 

Figure 8  Schematic diagram of inverter control 
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4 EMTP IMPLEMENTATION 

The developed PV park model setup in EMTP is encapsulated using a subcircuit with a 

programmed mask as illustrated in Figure 9 and Figure 10. The model consists of a solar panel, a 

LV/MV PV array transformer, equivalent PI circuit of the collector grid and a MV/HV PV park transformer 

(see Figure 6).  

The first tab of the PV park mask allows the user to modify the general PV park parameters 

(number of PV arrays in the PV park, POI and collector grid voltage levels, collector grid equivalent 

and zig-zag transformer parameters (if it exists)), the general PV array parameters (PV array rated 

power, voltage and frequency), the PV park operating conditions (number of PV arrays in service, 

PVPC operating mode and reactive power at POI) and the atmospheric conditions. 

In the Atmospheric conditions section, the maximum capacity of the park is calculated. If Power-

control is selected, the PV park operates at a reference power. The power is limited by the maximum 

PV park capacity. If MPPT-control is selected, the PV park operates at maximum capacity for the 

conditions specified in the Atmospheric conditions section. Warning: The MPPT controller is not 

modelled in the version so if the irradiance is varied during the simulation, the power reference does 

not change. 

The second and the third tab is used for MV/HV PV park transformer and LV/MV PV array 

transformer parameters, respectively. 

The forth tab is used to modify the parameters of converter control system given below: 

- Sampling rate and PWM frequency at PV converters 

- PV inverter input measuring filter parameters, 

- GSC control parameters, 

- Coupled / Decoupled sequence control option for GSC 

The fifth tab is used to modify the parameters of voltage sag, chopper and overcurrent protections. 

The sixth tab is used to modify the PVPC parameters. 

                       

Figure 9  PV park device, mask parameters shown in Figure 10 
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Figure 10  PV park device mask 

4.1 Detailed (DM) and Average Value (AVM) Converter Models 

The EMTP diagram of the PV dc-ac converter system detailed model (DM) is shown in Figure 11. 

A detailed two-level topology (Figure 12.a) is used for the VSCs in which the valve is composed by one 

IGBT switch, two non-ideal (series and anti-parallel) diodes and a snubber circuit as shown in Figure 

12.b. The non-ideal diodes are modeled as non-linear resistances. The DC resistive chopper limits the 

DC bus voltage and is controlled by protection system block. 

The PWM block in ac-dc-ac converter system EMTP diagram receives the three-phase reference 

voltages from converter control and generates the pulse pattern for the six IGBT switches by comparing 

the voltage reference with a triangular carrier wave. In a two-level converter, if the reference voltage is 

higher than the carrier wave then the phase terminal is connected to the positive DC terminal, and if it 
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is lower, the phase terminal is connected to the negative DC terminal. The EMTP diagram of the PWM 

block is presented in Figure 13. 

 

Figure 11  EMTP® diagram of dc-ac converter system block in PV models (detailed model 

version) 

 

      

Figure 12  (a) Two-level Converter, (b) IGBT valve 

 

 

Figure 13  PWM control block 

The DM mimics the converter behavior accurately. However, simulation of such switching circuits 

with variable topology requires many time-consuming mathematical operations and the high frequency 

PWM signals force small simulation time step usage. These computational inefficiencies can be 

eliminated by using average value model (AVM) which replicates the average response of switching 

devices, converters and controls through simplified functions and controlled sources [11]. AVMs have 

been successfully developed for wind and solar generation technologies [12], [13]. AVM obtained by 

replacing DM of converters with voltage-controlled sources on the ac side and current-controlled 

sources on the dc side as shown in Figure 14 and Figure 15. 
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The forth (converter control) tab of the PV park device mask (see Figure 10) enables used AVM-

DM selection. 

 

Figure 14  dc-ac converter system block in PV models (average value model version) 

 

 

Figure 15  EMTP® diagram of AVM Representation of the VSC 

 

4.2 PV park Model in EMTP 

The EMTP diagram of the PV park is shown in Figure 16. It is composed of  

- “PV hardware” block which contains the PV panel and the inverter, 

- “PV Control System” block, 

- “PV park Controller” block, 

- PI circuit that represents equivalent collector grid,  

- PV converter transformer (converter_transformer), 

- PV park transformer, 

- Initialization Sources with load flow (LF) constraint. 

- A Norton harmonic source for harmonic analysis. 

The initialization source contains the load flow constraint. Depending if the park operating mode, 

the bus is changed from PV (for V-mode) to PQ (for the other modes). It also prevents large transients 

at external network during initialization of PV electrical and control systems. 

A capacitor bank device is present in the circuit but excluded. Users can include is and modify the 

parameters. If the name is not modified, the capacitor will be considered for power flow initialization. 
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Figure 16  EMTP® diagram of the PV park 

4.2.1 PV park Control System Block 

The function of PVPC is to adjust the PV inverter controller voltage reference in order to achieve 

desired reactive power at POI (see Figure 5). The “PVPC” block consists in measuring block, an outer 

voltage (or power factor) control and a slow inner proportional-integral reactive power control as shown 

in Figure 17. The measuring block receives the voltages and the currents at POI (i.e. HV terminal of PV 

farm transformer) and calculates voltage magnitude, active power and reactive power. The reactive 

power reference for the inner proportional-integral reactive power control is produced either by the outer 

proportional voltage control (V-control) or by the outer power factor control (pf-control) unless Q-control 

is selected.  
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Figure 17  EMTP® diagram of “PVPC” (PV park controller) block 

 

4.2.2 PV Electrical System  

The EMTP diagram of the electrical system is composed of the PV panel, the dc-ac converter 

system, the choke filter, the shunt ac harmonic filters, the PV array transformer and the PV park 

transformer as shown in Figure 18.  

The measurement blocks are used for monitoring and control purposes. The monitored variables 

are GSC and total PV unit currents, and FC terminal voltages. The dc voltage is also monitored (in dc-

ac converter system block). All variables are monitored as instantaneous values and meter locations 

and directions are shown in Figure 18. 

The dc-ac converter system block details have been presented in Section 4.1. 
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Figure 18  EMTP® diagram of the PV park 

 The “shunt ac harmonic filters” block includes two band-pass filters as shown in Figure 19. These 

filters are tuned at switching frequencies harmonics n1 and n2. The filter parameters are computed as 
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where U  is the rated LV grid voltage, filterQ  is the reactive power of the filter and Q  is the quality 

factor.  

 The switching frequencies harmonics n1 and n2 are as follows 

 1 PWM gsc sn f f−=  (38) 

 2 12n n=  (39) 

where PWM gscf −  is the PWM frequency at GSC and sf  is the nominal frequency. 

In case another type of filter or other parameters should be used, the filter can be modified by the user 

inside the PV park subcircuit. If several PV parks are found in the network, the filter subcircuit and its 

parents must be made unique to avoid modifying all PV park instances.  
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Figure 19  “shunt ac harmonic filter” block 

4.2.3 PV inverter Control System Block 

The EMTP diagram of the PV inverter control system block is shown in Figure 20. The sampled 

signals are converted to pu and filtered. The sampling frequency are set to 12.5 kHz from device mask 

as shown in Figure 10 and can be modified by the user. The “sampling” blocks are deactivated in AVM 

due to large simulation time step usage. In generic model, 2nd order Bessel type low pass filters are 

used. The cut-off frequencies of the filters are set to 2.5 kHz and can be modified by the user. The order 

(up to 8th order), the type (Bessel and Butterworth) and the cut-off frequencies of the low pass filters 

can be modified from device mask as shown in Figure 10. The “GSC Compute Variables” block does 

the dq transformation required for the vector control. The GSC (“Grid Control” block) operates in the 

stator voltage reference frame. The protection block includes the over/under voltage relay, the deep 

voltage sag detector, the dc chopper control and overcurrent detector. 

 

Figure 20  EMTP® diagram of the PV inverter control block 

The transformation matrix T in (40) transforms the phase variables into two quadrature axis (d and 

q reference frame) components rotating at synchronous speed /d dt = . The phase angle   of the 

rotating reference frame is derived by the double synchronous reference frame (DSRF) PLL [14] (see 

Figure 21) from the PV inverter terminal voltages allowing the synchronization of the control parameters 

with the system voltage. In matrix T, the direct axis d is aligned with the stator voltage. 
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Figure 21  EMTP® diagram of DSRF PLL 

4.2.3.1 PV inverter Grid Side Converter Control 

The function of GSC is maintaining the dc bus voltage dcV  at its nominal value and controlling the 

positive sequence voltage at MV side of PV array transformer ( wtV
+

).The EMTP diagram of the “Grid 

Control” block is shown in Figure 22. GSC control offers both coupled and decoupled sequence control 

options. User can select the GSC control option from the device mask as shown in Figure 12. 
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Figure 22  EMTP® diagram of PV inverter “Grid Control” block 

4.2.3.1.1 PV inverter GSC Coupled Control 

The q-axis reference current is calculated by the proportional outer voltage control. 

 ( )qg V wti K V V + = −  (41) 

where VK  is the voltage regulator gain. The reference for MV side of PV array transformer positive 

sequence voltage (V  ) is calculated by the PVPC (see Figure 5). 

The positive sequence voltage at MV side of PV array transformer is not directly measured by the 

PV inverter controller and it is approximated by 

 ( ) ( )
2 2

wt dwt qwtV V V+ + += +  (42) 

where 

 dwt dwt tr dwt tr qwtV V R I X I+ + + += + −  (43) 

 qwt qwt tr qwt tr dwtV V R I X I+ + + += + +  (44) 

In (42) - (44), dwtV +
and qwtV +

 are the d-axis and q-axis positive sequence voltage at MV side of PV array 

transformer, dwtV +
and qwtV +

 are the d-axis and q-axis positive sequence voltage at PV inverter terminals 

(i.e. the d-axis and q-axis positive sequence voltage at LV side of PV array transformer),  dwtI + and qwtI +  

are the d-axis and q-axis positive sequence currents of PV inverter (i.e. the d-axis and q-axis positive 

sequence currents at LV side of PV array transformer), trR  and trX  are the resistance and reactance 

values of the PV array transformer. 

The d-axis reference current is calculated by the proportional outer dc voltage control. It is a PI 

controller tuned based on inertia emulation. 
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where 0  is the natural frequency of the closed loop system and   is the damping factor. 

( )Cdc Cdc wtH E S=  is the static moment of inertia,  CdcE  is the stored energy in dc bus capacitor (in 

Joules) and wtS  is the PV park rated power (in VA). 

The schematic of the GSC connected to the power system is shown in Figure 23. Z R j L= +  

represents the grid impedance including the transformers as well as the choke filter of the GSC. The 

voltage equation is given by 

 ( )d dt= − +abc gabc gabc gabcv R i L i v  (47) 

 

Figure 23  GSC arrangement 

The link between GSC output current and voltage can be described by the transfer function  

 ( )( ) 1gscG s R sL= +  (48) 

Using [15], the PI controller parameters of the inner current control loop are found as 

 p ck L=  (49) 

 i ck R=  (50) 

. 

The feed-forward compensating terms choke qg d chokeL i v −+  and ( )choke dg q chokeL i v −− +  are 

added to the d- and q-axis voltages calculated by the PI regulators, respectively. The converter 

reference voltages are as follows 

 ( )( )dg p i dg dg choke qg d chokev k k s i i L i v − = − + − + +  (51) 

 ( )( )qg p i qg qg choke dg q chokev k k s i i L i v − = − + − − +  (52) 

During normal operation, the controller gives the priority to the active currents, i.e. 
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where 
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dgI , 
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qgI  and 
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gI  are the limits for d-axis, q-axis and total GSC currents, respectively.  

The PV inverters are equipped with an FRT function to fulfill the grid code requirement regarding 

voltage support shown in Figure 24. The FRT function is activated when  
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 1 wt FRT ONV V+
−−   (54) 

and deactivated when  

 1 wt FRT OFFV V+
−−   (55) 

after a pre-specified release time FRTt . 

When FRT function is active, the GSC controller gives the priority to the reactive current by 

reversing the d- and q-axis current limits given in (53), i.e.  

 
( ) ( )

lim

2 2
lim lim

qg qg

dg dg g qg

i I

i I I i

 

  = −
 (56) 

The EMTP diagram of “Idq reference limiter” and “FRT decision logic” blocks are given in Figure 25 

and Figure 26, respectively. The limits for d-axis, q-axis and total GSC currents and FRT function 

thresholds can be modified from the device mask as shown in Figure 12. 

 

Figure 24  PV inverter reactive output current during voltage disturbances [16]. 

 

Figure 25  EMTP® diagram of “Idq reference limiter” block 
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Figure 26  EMTP® diagram of “FRT decision logic” block 

 

4.2.3.1.2 PV inverter Grid Side Converter Decoupled Sequence Control 

Ideally, the GSC control presented in the previous section is not expected to inject any negative 

sequence currents to the grid during unbalanced loading conditions or faults. However, the terminal 

voltage of PV inverter contains negative sequence components during unbalanced loading conditions 

or faults. This causes second harmonic power oscillations in GSC power output. The instantaneous 

active and reactive powers such unbalanced grid conditions can be also written as [17] 
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= + +

= + +
 (57) 

where 0P  and 0Q  are the average values of the instantaneous active and reactive powers respectively, 

whereas 2CP , 2SP , 2CQ  and 2SQ  represent the magnitude of the second harmonic oscillating terms 

in these instantaneous powers. 

With decoupled sequence control usage, four of the six power magnitudes in (57) can be controlled 

for a given grid voltage conditions. As the oscillating terms in active power 2CP , 2SP  cause oscillations 

in dc bus voltage dcV , the GSC current references ( dgi
+  , qgi

+  , dgi
−  , qgi

−  ) are calculated to cancel out 

these terms (i.e. 2 2 0C SP P= = ). 

The outer control and Idq limiter shown in Figure 8 calculates dgi , qgi , 
lim
dgI  and 

lim
qgI . These 

values are used to calculate the GSC current references dgi
+  , qgi

+  , dgi
−   and qgi

−   for the decoupled 

sequence current controller. As the positive sequence reactive current injection during faults is defined 

by the grid code (see Figure 24), the GSC current reference calculation in [17] is modified as below: 
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where 0P  is approximated by 
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 0 wt dgP V i+ =  (59) 

The calculated reference values in (58) is revised considering the converter limits 
lim
dgI  and 

lim
qgI . 

For example when ( ) lim
qg qg qgi i I+ − +  , the q-axis reference current references are revised as below 

 

( )

( )

lim

lim

qg qg qg qg qg

qg qg qg qg qg

i i I i i

i i I i i

+ + + −

− − + −

    = +
  

    = +
  

 (60) 

where "qgI
+

 and "qgI
−

 are the revised reference values for q-axis positive and negative currents, 

respectively. 

The revised d-axis positive and negative current references  "dgI
+

 and "dgI
−

 can be obtained with 

the same approach using 
lim
dgI . It should be emphasized here that, during faults the priority is providing 

dgI
+

 specified by the grid code. The remaining reserve in GSC is used for eliminating 2CP  and 2SP . 

Hence, its performance reduces with the decrease in electrical distance between the PV park and the 

unbalanced fault location. 

As dgi
+

, qgi
+

, dgi
−

 and qgi
−

 are controlled, the decoupled sequence control contains four PI regulator 

and requires sequence extraction for GSC currents and voltages. The sequence decoupling method 

[18] shown in Figure 27 is used in EMTP implementation. In this method, a combination of a low-pass 

filter (LPF) and double line frequency Park transform (
2P−  and 

2P+ ) is used to produce the oscillating 

signal, which is then subtracted. The blocks C  and P  represent the Clarke and Park transformation 

matrices, and the superscripts ±1 and ±2 correspond to direct and inverse transformation at line 

frequency and double line frequency, respectively. 

In EMTP implementation, the feed-forward compensating terms ( )choke qg d chokeL i v −+  and 

( )choke dg q chokeL i v −− +  are kept in coupled form and added to the PI regulator outputs in stationary αβ-

frame. 

P
+1

Σ
P
-2

LPF
-

+

C
iabc iαβ

P
-1

Σ
P
+2

LPF -

+

idq

idq

+

-

 

Figure 27  Sequence extraction using decoupling method. 

4.2.4 PV inverter Protection System Block 

Figure 28 shows the “protection system” block. It includes overvoltage and undervoltage protection 

relays, a dc overvoltage protection (chopper protection) and an overcurrent detector for each converter 
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to protect IGBT devices when the system is subjected to overcurrent. For initialization, all protection 

systems, except for DC chopper protection, are activated after 100ms of simulation (i.e. init_Prot_delay 

= 0.1s). The protection system parameters can be modified from the device mask as shown in Figure 

29. 

 

 

Figure 28  EMTP® diagram of protection system block 
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Figure 29  Protection system parameters 

4.2.4.1 Overvoltage and Undervoltage protections 

Figure 30 shows overvoltage and undervoltage protections. It includes rms-based over/under 

voltage relays, cumulative instantaneous overvoltage relays, deep voltage sag detectors. 
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Figure 30  EMTP® diagram of overvoltage and undervoltage protections  

The instantaneous overvoltage protection suggested by IEEE Std 1547-2018 is developed and 

added to the protection schemes. This protection works based on a cumulative instantaneous 

overvoltage. Figure 31 shows the threshold values of the voltage (per unit of nominal instantaneous 

peak base) and cumulative duration of the transient overvoltage protection, and they can be modified 

in the device mask. The cumulative duration is the sum of durations when the instantaneous voltage 

exceeds the protection threshold over a one-minute time window.  

  

Figure 31  Transient overvoltage limits 
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The RMS-based over/under voltage protections are designed based on the technical requirements 

set by Hydro Quebec for the integration of renewable generation. The over/under voltage limits as a 

function of time are presented in Figure 32 and can be modified in the PV device mask. The voltages 

below the red line reference and above the black line reference correspond to the ride-through region 

where the PV park is supposed to remain connected to the grid. This block measures the rms voltages 

on each phase and sends a trip signal to the PV inverter circuit breaker when any of the phase rms 

voltage violates the limits in Figure 32. 

  

Figure 32  LVRT and HVRT requirements [19] 

The “Deep Voltage Sag Detector” block temporary blocks the GSC in order to prevent potential 

overcurrents and restrict the FRT operation to the faults that occur outside the PV park. 

4.2.4.2 dc Overvoltage Protection Block 

 The function of dc chopper is to limit the dc bus voltage. It is activated when the dc bus voltage 

exceeds chopper ONU −  and deactivated when dc bus reduces below chopper OFFU − . EMTP diagram of 

the “dc overvoltage protection” is shown in Figure 33. 

 

Figure 33  EMTP® diagram of dc overvoltage protection block  
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4.2.4.3 Overcurrent Protection Block 

 The overcurrent protection shown in Figure 34 blocks the converter temporarily when the 

converter current exceeds the pre-specified limit. 

 

Figure 34  EMTP® diagram of overcurrent protection block  
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5 PV PARK RESPONSE TO UNBALANCED FAULTS 

This section provides a comparison between the PV park responses with coupled and decoupled 

sequence controls. Although the comparison is conducted for various type unbalanced faults in the 120 

kV, 60 Hz test system shown in Figure 35 [28]-[30], only the 250 ms double line to ground (DLG) fault 

simulation scenarios are presented. The simulation scenarios are presented in Table I. The PV 

converters are represented with their AVMs. The simulation time step is 10 µs. 

In the test system, the loads are represented by equivalent impedances connected from bus to 

ground on each phase. The transmission lines are represented by constant parameter models and 

transformers with saturation. The equivalent parameters for the 34.5 kV equivalent feeders are 

calculated on the basis of active and reactive power losses in the feeder for the rated current flow from 

each of the PVs [31]. In all simulations, the PV is operating at full load with unity power factor (i.e. POIQ

= 0).  

 

Figure 35  120 kV, 60 Hz test system 

 

Table I Simulation Scenarios 

Scenario Fault Location GSC Control Scheme 

M1 BUS4 Coupled Control 

M2 BUS4 Decoupled Sequence Control 
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5.1 PV park Response to Unbalanced Faults 

5.1.1 Simulation Scenarios M1 and M2 with PV park 

As shown in Figure 36, the simulated unbalanced fault results in second harmonic pulsations in 

the active power output of the PV park in scenario M1. These second harmonic pulsations are 

eliminated in scenario M2 with decoupled sequence control scheme in GSC at the expense of a 

reduction in the active power output of PV park as shown in Figure 37. On the other hand, the reactive 

power output of the PV park is similar in scenarios M1 and M2. This is due to the strict FRT requirement 

on positive sequence reactive currents. 

The performance of GSC decoupled sequence control is limited to GSC rating as well as the FRT 

requirement specified by the grid code. The complete elimination of second harmonic pulsations cannot 

be achieved when the required GSC current output exceeds its rating. It should be noted that, when the 

electrical distance between the PV park and unbalanced fault decreases, larger GSC currents are 

required to achieve both FRT requirement and the elimination of second harmonic pulsations. 

The negative and positive sequence fault currents ( nI  and pI ) of the PV park in scenarios M1 

and M2 are also quite different as illustrated in Figure 38. This difference strongly depends on the 

unbalanced fault type, its electrical distance to the PV park, GSC rating and the FRT requirement 

specified by the grid code. It becomes less noticeable especially for the electrical distant faults such as 

an unbalanced fault at BUS6 as presented in Section 5.1.2.  

 

Figure 36  PC2 and PS2 of aggregated PV park in scenarios M1 and M2 

 

Figure 37  P0 and P0 of aggregated PV park in scenarios M1 and M2 
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Figure 38  In and Ip of the PV park in scenarios M1 and M2 

5.1.2 Simulation Scenarios N1 and N2 with the PV park 

As the electrical distance between the PV park and the unbalanced fault is much larger in scenario 

N1 compared to scenario M1, both the voltage sag and the second harmonic pulsations in the active 

power output are much smaller in scenario N1 compared to the scenario M1 (see Figure 39 and Figure 

36). As a result, the decupled sequence control of GSC achieves elimination of these pulsations in 

scenario N2 without any reduction in the active power output of the PV park (see Figure 40 and Figure 

37). As seen from Figure 41 and Figure 38, the PV park fault current contribution difference between 

the scenarios N1 and N2 also becomes less noticeable especially for positive sequence fault currents 

compared to the difference between scenarios M1 and M2. 

 

Figure 39  PC2 and PS2 of aggregated PV park in scenarios N1 and N2 
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Figure 40  P0 and Q0 of aggregated PV park in scenarios N1 and N2 

 

  

Figure 41  In and Ip of the PV park in scenarios N1 and N2 
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6 AVERAGE VALUE MODEL PRECISION AND EFFICIENY 

6.1 120 kV Test System Simulations 

This section provides a comparison between average value model (AVM) and detailed model (DM) 

of the presented PV park models. The simulation scenario M2 in Table I is repeated for 50 µs simulation 

time step (M3) and for DM with 10 µs simulation time step (M4).  

6.1.1 Simulation Scenarios M2 - M4 with the PV park 

As shown in Figure 42-Figure 44, AVM usage instead of DM provides very accurate results even 

for 50 µs time step usage. 

 

Figure 42  PC2 and PS2 of aggregated PV park in scenarios M2 - M4 

 

 

Figure 43  P0 and Q0 of aggregated PV park in scenarios M2 - M4 
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Figure 44  In and Ip of the PV park in scenarios M2 - M4 
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7 DETAILED PV PARK MODELS AND AGGREGATED MODEL 
PRECISION 

The example is done with wind-turbines. The same conclusions can be drawn for PV park. 

Certain grid integration studies, such as analysing collector grid faults and collector grid 

overcurrent protection system performance, LVRT and HVRT capability studies [4], ferroresonance 

study [32], require EMT type simulations with detailed Wind Park (WP) model. These studies do not 

only require detailed MW collector grid model, but also detailed model of HV/MV WP substation 

including overvoltage protection, overcurrent and differential current protections, measuring current and 

voltage transformers as shown in Figure 45 -Figure 47.  

 

 

Figure 45  EMTP diagram of the 45 x 1.5 MW WP detailed model given in Figure 32. 
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Figure 46  EMTP diagram of the HV/MV WP Substation 

 

Figure 47  EMTP diagram of MV Feeder-1 

The WT model in Figure 47 is obtained from the WP model presented in Chapter 4 by excluding 

the Wind Park Controller (WPC), WP transformer and collector grid equivalent. The associated device 

mask is shown in Figure 48. It does not include the tabs used for MV/HV WP transformer and WPC 

parameters. On the other hand, the first tab of the aggregated wind turbine mask includes certain WP 

parameters (total number of WTs in the WP, POI and collector grid voltage levels, collector grid 

equivalent and the MV/HV WP transformer impedances) in addition to the general wind turbine 

parameters (WT rated power, voltage and frequency) and wind speed. It should be noted that, the 

MV/HV WP transformer and the collector grid equivalent impedances are used GSC parameter 

calculation (see section 4.2.3.1). 

Scenario M2 in Table I (DLG fault at BUS4 for GSC decoupled sequence control scheme) is 

simulated using the detailed WP model to conclude on accuracy of the aggregated model.  As shown 

in Figure 49 - Figure 52, the aggregated models of WP provide accurate results. 
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Figure 48  Aggregated FSC based wind turbine device mask 

 

 

Figure 49  Active and reactive power at POI, PV park with FSC WTs 
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Figure 50  Positive and negative sequence currents at POI, PV park with FSC WTs 

 

Figure 51  Active and reactive power at POI, PV park with DFIG WTs 

 

Figure 52  Positive and negative sequence currents at POI, WP with DFIG WTs 
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