Exciters and Governors: Power System Stabilizer PSS4C

citers and Governors: Power System Stabilizer PSS4C	. 1
Description	. 1
1.1 Pins	. 1
1.2 Parameters	. 1
1.2.1 Data tab	. 1
Initial conditions	. 3
References	. 3
	citers and Governors: Power System Stabilizer PSS4C Description 1.1 Pins 1.2 Parameters 1.2.1 Data tab Initial conditions References

Hossein Ashourian, Jean Mahseredjian, 5/20/2021 11:27 PM

1 Description

This device is an implementation of the IEEE type PSS4C power system stabilizer model. This device is implemented as described in [1]. Implementation details can be viewed by inspecting the subcircuit of this device.

1.1 Pins

This device has 3 pins:

Pin name	Туре	Description	Units
dw	Input	Speed deviation	pu
Pe	Input	Electrical power	pu
VST	Output	PSS output	pu

1.2 Parameters

The default set of parameters can be found in [1].

1.2.1 Data tab

The parameters on the Data tab are:

- 1. Gain K_{VL}: very low band gain
- 2. Gain K_{VL1}: very low band differential filter gain
- 3. Coefficient K_{VL11}: very low band first lead-lag block coefficient
- 4. Time constant T_{VL1} : very low band numerator time constant
- 5. Time constant T_{VL2} : very low band numerator time constant
- 6. Time constant TvL3: very low band numerator time constant
- 7. Time constant T_{VL4} : very low band numerator time constant

8. Time constant T_{VL5}: very low band numerator time constant

9. Time constant T_{VL6}: very low band numerator time constant

10. Gain K_{VL2}: very low band differential filter gain

- 11. Coefficient K_{VL17}: very low band first lead-lag block coefficient
- 12. Time constant T_{VL7}: very low band numerator time constant
- 13. Time constant T_{VL8}: very low band numerator time constant
- 14. Time constant T_{VL9}: vert low band numerator time constant
- 15. Time constant TvL10: very low band numerator time constant
- 16. Time constant T_{VL11}: very low band numerator time constant
- 17. Time constant T_{VL12}: very low band numerator time constant
- 18. Very low band upper limit V_{VLmax}: very low band upper limit
- 19. Very Low band lower limit V_{VLmin}: very low band lower limit
- 20. Gain K_L: low band gain
- 21. Gain K_{L1}: low band differential filter gain
- 22. Coefficient K_{L11}: low band first lead-lag block coefficient
- 23. Time constant T_{L1}: low band numerator time constant
- 24. Time constant TL2: low band numerator time constant
- 25. Time constant TL3: low band numerator time constant
- 26. Time constant TL4: low band numerator time constant
- 27. Time constant TL5: low band numerator time constant
- 28. Time constant TL6: low band numerator time constant
- 29. Gain KL2: low band differential filter gain
- 30. Coefficient KL17: low band first lead-lag block coefficient
- 31. Time constant T_{L7} : low band numerator time constant
- 32. Time constant TL8: low band numerator time constant
- 33. Time constant TL9: low band numerator time constant
- 34. Time constant T_{L10}: low band numerator time constant
- 35. Time constant T_{L11}: low band numerator time constant
- 36. Time constant T_{L12}: low band numerator time constant
- 37. Low band upper limit V_{Lmax}: low band upper limit
- 38. Low band lower limit V_{Lmin}: low band lower limit
- 39. Gain K_I: intermediate band gain
- 40. Gain K_{I1}: intermediate band differential filter gain
- Coefficient K_{I11}: intermediate band first lead-lag block coefficient
- 42. Time constant T_{I1}: intermediate band numerator time constant
- 43. Time constant T₁₂: intermediate band numerator time constant
- 44. Time constant T_{I3}: intermediate band numerator time constant
- 45. Time constant T₁₄: intermediate band numerator time constant
- 46. Time constant T₁₅: intermediate band numerator time constant
- 47. Time constant T_{16} : intermediate band numerator time constant
- 48. Gain K₁₂: intermediate band differential filter gain
- 49. Coefficient K_{I17}: intermediate band first lead-lag block coefficient
- 50. Time constant T₁₇: intermediate band numerator time constant
- 51. Time constant T₁₈: intermediate band numerator time constant
- 52. Time constant T₁₉: intermediate band numerator time constant
- 53. Time constant T_{I10}: intermediate band numerator time constant
- 54. Time constant T_{I11}: intermediate band numerator time constant
- 55. Time constant T_{I12}: intermediate band numerator time constant
- 56. Low band upper limit V_{Imax}: intermediate band upper limit
- 57. Low band lower limit V_{lmin}: intermediate band lower limit
- 58. Gain K_H: high band gain
- 59. Gain K_{H1}: high band differential filter gain
- 60. Coefficient K_{H11}: high band first lead-lag block coefficient
- 61. Time constant T_{H1}: high band numerator time constant
- 62. Time constant T_{H2}: high band numerator time constant
- 63. Time constant T_{H3}: high band numerator time constant

- 64. Time constant T_{H4}: high band numerator time constant
- 65. Time constant T_{H5} : high band numerator time constant
- 66. Time constant T_{H6}: high band numerator time constant
- 67. Gain K_{H2}: high band differential filter gain
- 68. **Coefficient K_{H17}:** high band first lead-lag block coefficient
- 69. Time constant T_{H7}: high band numerator time constant
- 70. Time constant T_{H8}: high band numerator time constant
- 71. Time constant T_{H9}: high band numerator time constant
- 72. Time constant T_{H10}: high band numerator time constant
- 73. Time constant T_{H11}: high band numerator time constant
- 74. Time constant T_{H12}: high band numerator time constant
- 75. Low band upper limit V_{Hmax}: high band upper limit
- 76. Low band lower limit V_{Hmin}: high band lower limit
- 77. Maximum PSS output V_{STMAX}: maximum PSS output
- 78. Minimum PSS output V_{STMIN}: minimum PSS output
- 79. Inertia constant H: Inertia constant
- 80. Filter frequency W_{n1}: first notch filter frequency
- 81. Filter bandwidth Bw1: first notch filter 3 dB bandwidth
- 82. Filter frequency W_{n2} : second notch filter frequency
- 83. Filter bandwidth Bw2: second notch filter 3 dB bandwidth

2 Initial conditions

The initial output signal is zero from the steady-state solution.

3 References

[1] "IEEE Recommended Practice for Excitation System Models for Power System Models for Power System Stability Studies," IEEE Standard 421.5-2016.