
Exciters and Governors: Synchronous machine Phasors

Exciters and Governors: Synchronous machine Phasors	
1 Description	1
1.1 Pins	1
1.2 Parameters	2
1.2.1 Data tab	
2 References	2

Tshibain Tshibungu, Jean Mahseredjian, 5/18/2017 2:03 PM

1 Description

This device is the calculator of synchronous machine phasors (current and terminal voltage), reactive power and terminal voltage transducer (with optional current-compensation elements). The mathematical calculation of phasors is explained below. Implementation details can be viewed by inspecting the subcircuit of this device.

1.1 Pins

This device has 8 pins:

Pin name	Туре	Description	Units
Vd	Input	d-axis terminal voltage of the synchronous	pu
		machine	
Vq	Input	q-axis terminal voltage of the synchronous machine	pu
ld	Input	d-axis current of the synchronous machine	pu
lq	Input	q-axis current of the synchronous machine	pu
Phasor_VT	Output, bundle	Terminal voltage of the synchronous machine	pu
		(phasor, magnitude and phase)	
Phasor_IT	Output, bundle	Current of the synchronous machine (phasor,	pu
		magnitude and phase)	
VC	Output	Terminal voltage transducer	pu
Q	Output	Reactive power	pu

1.2 Parameters

The default set of parameters can be found in [1].

1.2.1 Data tab

The parameters on the Data tab are:

- 1. Resistance R_c: resistive component of load compensation
- 2. Reactance Xc: reactive component of load compensation
- 3. Time constant T_r : time constant
- 4. Natural frequency f_n : naturel frequency
- 5. **Damping** ξ : damping ratio
- 6. Filter Model Order option: see explanations below.

There are two possible selections for the Filter Model Order option:

- 1. Low-pass 1st order
- 2. Low-pass 2nd order

Assuming that the synchronous machine is under balanced conditions, the synchronous machine phasors (current and voltage) are calculated as follows.

The current phasor is found from:

$$I_{\rm T} = \sqrt{I_{\rm d}^2 + I_{\rm q}^2} \tag{1}$$

$$\alpha_{\rm I} = {\rm tg}^{-1} \left(\frac{{\rm I}_{\rm d}}{{\rm I}_{\rm q}} \right) \tag{2}$$

where I_T is the calculated current magnitude (pu) from the I_d and I_q measurements, and α_1 is the current phase angle (rad) with q-axis as the reference.

The terminal voltage phasor is found from:

$$V_{\rm T} = \sqrt{V_{\rm d}^2 + V_{\rm q}^2} \tag{3}$$

$$\alpha_{\rm V} = {\rm tg}^{-1} \left(\frac{{\rm V}_{\rm d}}{{\rm V}_{\rm q}} \right) \tag{4}$$

where V_T is the terminal voltage magnitude (pu) from the V_d and V_q measurements and α_V is the terminal voltage phase angle (rad) with q-axis as the reference.

2 References

[1] "IEEE Recommended Practice for Excitation System Models for Power System Models for Power System Stability Studies," IEEE Standard 421.5-2005.