
EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 1 of 27

Device Mask options and programming

Device Mask options and programming .. 1
1 Introduction .. 1
2 The black_box.dwj properties script .. 2

2.1 Introduction ... 2
2.2 Available options ... 3

2.2.1 Syntax .. 3
2.2.2 Recognized units ... 4
2.2.3 Specific attributes .. 4
2.2.4 Debugging ... 4
2.2.5 Unmasking ... 5

2.3 Examples .. 5
3 The no_script_box.dwj properties script .. 9
4 The script_black_box.dwj properties script .. 9

4.1 Introduction ... 9
4.2 Debugging .. 10
4.3 Mask sections ... 10

4.3.1 Initial Parameters-Values .. 11
4.3.2 Rules/Calculations ... 12
4.3.3 Variables to transmit .. 13
4.3.4 Example ... 14

4.4 Using Global Data ... 18
4.5 Options ... 20
4.6 Unmasking .. 21

5 Advanced scripting ... 21
5.1 Scripting methods ... 22
5.2 Example: programming the mask of ñRLC_Load (PQ)ò ... 23
5.3 Masking subcircuits with scripted-mask-subcircuits ... 24

Jean Mahseredjian, 2017-08-14 13:48:00

1 Introduction
The user can create a mask after creating a subcircuit. An example of top circuit with a subcircuit is shown in
Figure 1. After the creation of the subcircuit the user can right-click on the subcircuit and select ñSubcircuit Infoò.
This is where a subcircuit (subnetwork) mask can be specified. The selection ñUse the default properties scriptò
selects the ñscript_black_box.dwjò script. Other readily available scripts can be selected from the available
dropdown menu:

Ç black_box.dwj: basic mask with parameters and values, no calculations can be made
Ç no_script_box.dwj does not allow entering data, only documentation information can be created

These scripts are described in their respective sections presented below.

Masking is part of open-architecture options in EMTP-EMTPWorks. It can be used at the basic level or with more
advanced options. Advanced options may require writing codes (programming). The programming rules must
be followed by the user or simulation problems or complicated error messages can occur otherwise.

The user must read this document before developing masks in EMTPWorks. All demonstration designs cited in
this document are available in the program folder Examples\ShowHow\MaskOptions of EMTPWorks.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 2 of 27

Tooltips are available for all Mask options as in all EMTPWorks devices.

2 The black_box.dwj properties script

2.1 Introduction
The ñblack_box.dwjò properties script is the most simple mask that can be created and used for a subcircuit. It
can be selected using the dropdown menu shown in Figure 2.

The ñblack_box.dwjò script cannot be modified by the user since it is used by several built-in devices of
EMTPWorks, but the user can program similar scripts (masks) by copying this code and related files.

All entered data is saved into the FormData attribute of the masked device. The actual data transmitted to the
EMTP Netlist is saved into the ModelData attribute.

After masking the subcircuit Fault_device shown in Figure 1, double-clicking on the device will not open its
subcircuit, but its mask. If the user wants to position into the subcircuit contents then the required command is
ñOptions>Subcircuit>Push Intoò or use Alt+double-click. The contents of the mask are initially blanked. This is
shown in Figure 3.

Figure 1 A top circuit with a subcircuit (see black_demo.ecf)

Figure 2 The subcircuit mask selection menu

+

1 /_90

AC1

+

10,100mH

 RL1

+

0.57uF

C1

P

Fault_device

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 3 of 27

Figure 3 Initial startup of the black box mask

2.2 Available options

2.2.1 Syntax
The Data text area of the black box device can be used to enter simple expressions with equality sign. The
generic format is given by:
Variable_Name = Value;

The Variable_Name field can contain a maximum of 30 alphanumeric (A-Za-z0-9_) characters including the
underscore. The first character cannot be a number. It can be used as a named value (programmed value or
variable) by devices located in the masked subnetwork. It is also visible in subnetworks contained in the masked
subnetwork and at any level. A named value is a string enclosed between two ó#ô characters and entered in
device data fields instead of entering numeric values. Example:

#Rfault#

This is a data programming method.

The number of characters before the equality sign is arbitrary.
The equality sign is mandatory.
The number of characters after the equality sign is arbitrary.

The Value field is limited to 30 characters. The Value field can be a number, a number followed by units, a string
or a named value. When it is a named value it follows the same rules as the Variable_Name since it can refer
only to an existing Variable_Name.

The Variable_Name, the equality sign and the Value field must appear on the same line.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 4 of 27

The Value field can be also a vector. The vector is started using a left square bracket ó[ó and terminated with a
right bracket ó]ô. A vector can be entered using more than one line. The contents of the vector are other Value
fields. When a Value field is a vector, its target named value can use index parameters, such as, for example:

#Myvector(k)#

or

#Myvector(k:m)#

where k and m must be also defined in a black box script.

The Value field must be terminated with the semicolon character ó;ô.

Comments must start with ó//ô. Comments are single-line.

It is not allowed to enter more than 100 characters per data line.

2.2.2 Recognized units
The currently recognized units are those that are used by the target data fields. Default (no scaling factor) units
are not entered. The Greek character m is entered as: u.

2.2.3 Specific attributes
Subcircuit device attributes are used to set extra parameters for the black box. Attributes can be selected and
modified by right-clicking on the subcircuit symbol and selecting ñAttributesò. This is an advanced option, there
is limited error checking and careless usage can cause bugs and corrupted data.

2.2.3.1 DeviceDoc attribute
The DeviceDoc attribute is used to provide a web page help location for the created device. This replaces the
default Help tab of the black box mask.

The syntax is:
Root_location,html_file
The Root_location is the top directory where the html_file can be found. The ñblack_box.dwjò script appends the
Root_location to the script path.
In this example:

controls,generator\help.htm

the full path of the help file is found under ñC:\Program Files\EMTPWorks\Info Scripts\controls\generatorò, since
the script ñblack_box.dwjò is located in the directory ñInfo Scriptsò.
If the Root_location is omitted, then the user can enter the full path of the html page:

,C:\Program Files\EMTPWorks\Info Scripts\controls\generator\help.htm

2.2.3.2 HideSBBRules attribute
This attribute is used to disable the Data text area shown in Figure 3 and to provide a title instead of the default
title ñBlack Box deviceò.
The syntax is:
Hide_rule,my_title
When the Hide_rule is set to 0, then the Data text area is disabled. This is useful for blocking the mask to other
users and thus avoiding data input errors.
The my_title is any title to be shown.

2.2.4 Debugging
In addition to manual testing and corrections for error messages, if the user realizes that some data is still not
correctly substituted, then the only remaining option is to request EMTP to provide the final Netlist it is decoding.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 5 of 27

The final Netlist includes all variable substitutions and can be obtained by selecting
ñSimulate>Advanced>Simulation Optionsò and then ñDump decoded dataò from the Output tab.

2.2.5 Unmasking
When the user decides to unmask by going back to the ñSubcircuit Propertiesò (Figure 2) and deselecting the
mask, it is very important to remember that the ModelData attribute is not erased and is still transmitted into the
Netlist. The user can erase the ModelData attribute contents through the device ñAttributesò right-click menu.
There is also a specific message sent to the user requesting to confirm the automatic deletion of ModelData
contents. If the previously existing mask is not erased it may cause conflicts in the simulation and modify
simulation results.

2.3 Examples
If it is desired, for example, to control from the mask the fault occurrence times and the fault resistance, then the
following data can be entered in Figure 3 (see Figure 4):

//Enter data below
//Switch times:
Fault_on =1ms;
Fault_off=5ms;
//Fault resistance:
Rfault = 100;
//Scopes in the subnetwork Fault_device
Scope_of_switch='?v,?i';
//Turn on the Rextra
PartR_on_or_off='RLC';
//define fault inductance
L_fault=100mH;

The subcircuit is shown in Figure 5.
Ç The switch SWFault and the resistance Fault_resistance are given named values (programmed values

or variables) to receive the variables defined in the mask.
Ç The device data web of SWFault is shown in Figure 8. The variable Rfault is transmitted to both

Fault_resistance and Rfault2.
Ç The switch is using a programmable scope modified at the mask level using the Scope_of_switch

variable. More information on programmable scopes can be found in the help section of the Attributes
tab.

Ç The resistance Rextra located in the subcircuit DEVF shown in Figure 6, is optional and can be
disconnected through its part name. This is achieved by entering the name x_PartR_on_or_off into the
device Part attribute. When the variable PartR_on_or_off is given the original part name of the device,
the device becomes active. To disable (delete) the device, it is needed to make PartR_on_or_off equal
to the string óExcludeô.

The subcircuit DEVF has its own mask (see Figure 7) and its data is:

//Enter data below
Rextra=Rfault;

This mask demonstrates that a mask in a subcircuit can use and transmit variables defined at a higher level. If
the data above is modified to include L_fault:

//Enter data below
Rextra=Rfault;
L_fault=11.45e-3;

Then, although L_fault has been already defined at a higher level, it is the definition from the mask closest to
the device that takes precedence.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 6 of 27

Figure 4 Mask of subcircuit Fault_device in Figure 1

Figure 5 Subcircuit Fault_device

Figure 6 Subcircuit DEVF

+
#Fault_on#/#Fault_off#/0

SWFault

P

+

#Rfault#

Fault_resistance

P1 P2

DEVF

+

#Rfault#

Rfault2

+
Lfault

#L_fault#

P1 P2

+

Part=x_PartR_on_or_off

#Rextra#

Rextra_in2

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 7 of 27

Figure 7 Mask of DEVF shown in Figure 6

Figure 8 SWFault data for Figure 5

An example of vector usage is given by the black box data of the transformer device shown in Figure 9:

R1=1.674421875;
L1=0.17766167881829983;
Rm=248062.5;
PhiLnonl=[682.2347010794667 733.4023036604267 784.5699062413867 818.68164129536 839.148682327744
1173.4436858566828];
ILnonl=[1.0368210551463188 5.184105275731594 12.960263189328985 25.92052637865797 51.84105275731594
1036.821055146319];
Lnonl='Lnonl';
Rmag='RLC';
R2=0.026999999999999996;

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 8 of 27

L2=0.0028647889756541152;
Phiss01=0;
Phiss02=0;
Phiss03=0;
Ratio=0.38095238095238093;
Lmag_scope='?i,?f';
W1_scope ='';
W2_scope ='';

The subcircuit contents are shown in Figure 10.
The vectors PhiLnonl and ILnonl are captured by a nonlinear inductance connected in the following level subcircuit

xfmr_YY_unit.

Figure 9 Masked transformer with modified subcircuit symbol (see black_demo.ecf)

Figure 10 Subcircuit for the transformer of Figure 9

1 2

YY1

inY outY

NeutralW1 NeutralW2

+

xfmr_A

xfmr_YY_unit

+

xfmr_C

xfmr_YY_unit

+

xfmr_B

xfmr_YY_unit

c

b

a

Y

NW2NW1

c

b

a

Yout

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 9 of 27

Figure 11 Nonlinear inductance located in the subnetwork xfmr_YY_unit of Figure 10

3 The no_script_box.dwj properties script
This script is provided only for creating a help panel. It can use only the ñDeviceDocò attribute explained above.

4 The script_black_box.dwj properties script

4.1 Introduction
This script is based on JavaScript programming. It can be selected from the EMTPWorks ñInfo Scriptsò directory
using the Browse button in Figure 2 or by simply selecting the initial default script.

The objective is similar to ñblack_box.dwjò. It is to transmit data through the ModelData attribute.
The data transmitted to the EMTP Netlist is saved into the ModelData attribute.

The advantage in this mask is that in addition to entering data in the ñInitial Parameters/Valuesò section (see
Figure 12), it is allowed to provide rules for transforming primitive (initial) data into actual circuit parameter values
using the ñRules/Calculationsò text-area. The ñRules/Calculationsò section is programmed using JavaScript.
Extensive coding can be applied using JavaScript and calling various functions and services. It is possible to
call external codes saved in files. The rules for named values that are the receptacles of calculated data, are the
same as in section 2.2.1 for the black box device.

The last section of this mask is for determining the parameters that must be transmitted to the contents of the
masked subcircuit.

The mask (all sections) is executed when the OK button is clicked.

The devices based on this type of mask are called scripted-mask-subcircuit devices.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 10 of 27

4.2 Debugging
As explained above, the ModelData attribute of the masked device, must contain all final parameters and values
transmitted to subcircuit contents.
In addition to manual testing and corrections for error messages, if the user realizes that some data is still not
correctly substituted for the devices found in the masked subcircuit, then one option is to request EMTP to
provide the final Netlist it is decoding. The final Netlist includes all variable substitutions and can be obtained by
selecting ñSimulate>Advanced>Simulation Optionsò and then ñDump decoded dataò from the Output tab.

4.3 Mask sections
When this mask type is selected and the device is double-clicked then the empty mask shown in Figure 12 is
opened. There are three sections in this mask:

¶ Initial Parameters-Values: for entering parameters and values using ñGrid mode inputò and/or ñText
mode inputò.

¶ Rules/Calculations: for providing codes for the transformation of parameters into actual named values
used in the masked subcircuit contents.

¶ Variables to transmit: for selecting the variables resulting from calculations or entered directly (in Initial
Parameters-Values) that must be transmitted to subcircuit contents. These are the named values used
in the masked subcircuit contents.

Some or all sections can be hidden using options available in Options tab. Some sections can be disabled. The
disabled sections are not used in the execution of the mask.
The checkboxes ñUse Global Dataò and ñUpdate Global Data automaticallyò will be explained in a following
section.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 11 of 27

Figure 12 Empty script_black_box.dwj mask version

4.3.1 Initial Parameters-Values
In this section (see Figure 12) the user can enter the mask parameters and values. There are two options: ñGrid
mode inputò and/or ñText mode inputò. Although the ñGrid mode inputò should be the preferred choice for users,
and the ñText mode inputò can be disabled (Disable checkbox), it could be useful for some cases, where long
and complicated expressions must be entered.

4.3.1.1 Grid mode input
In the ñGrid mode inputò version:

1. Parameter: any parameter name. Illegal names will be rejected by the software.
2. Value: the value for entered parameter.

a. It is allowed to enter vectors using the JavaScript format, example: [1, 2].
b. It is allowed to enter strings using the JavaScript format, example: ó?v,?i,ô
c. It is allowed to enter global variables, example: oGlobalData.Deltat

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 12 of 27

d. It is not allowed to enter units. The users may however decide to use a scale (for example, 10
may mean 10mH) and make the appropriate conversions in the ñRules/Calculationsò section
presented below.

e. The Parameter name can be left blank.
f. The Value cell is evaluated only when the corresponding Parameter name is not blank.

3. Definition/Comments: the user can enter helpful information about each Parameter.
a. This cell is free-text and multiline.
b. The complete contents also appear when the mouse is placed over the cell.
c. The cell contents can be left blank.

4. The input grid can be modified and adjusted using the keyboard options listed in the Tooltip of the title
ñInitial Parameters-Valuesò.

5. The Parameter-Value pairs are assembled and evaluated by the mask using JavaScript.

4.3.1.2 Text mode input
In the ñText mode inputò parameters and values are entered using JavaScript. The full set of the JavaScript
language with EMTPWorks extensions is supported. The underlying code simply applies the JavaScript ñevalò
function on the contents of this text area. This approach provides more flexibility and can be used in combination
with the ñGrid mode inputò to enter long vectors or other complex expressions.
The ñText mode inputò also allows to enter vectors, strings and global variables. For the strings transmitted to
the EMTP code (Netlist) it is necessary to use enclosing double quotes. This is because EMTP decodes strings
entered in between single quotes.
As for the ñGrid mode inputò mode, It is not allowed to enter units for parameter values. The users may however
decide to use a scale (for example, 10 may mean 10mH) and make the appropriate conversions in the
ñRules/Calculationsò section presented below.
An example of long vector usage in the ñText mode inputò area is given by (see usage for Figure 11):

PhiLnonl=[682.23, 733.402, 784.569, 818.68164129536, 839.148682327744, 1173.4436858566828];

Such vectors are automatically converted to the required EMTP format when the user clicks on the OK button.

The ñText mode inputò area can be left empty or disabled (Disable checkbox), in which case its contents are
ignored.

4.3.2 Rules/Calculations
This section is for entering actual rules using the full JavaScript language with EMTPWorks extensions, such as
data testing or mathematical operations. For example:

//limit L_fault
if(L_fault > 90e-03) {
 L_fault= 90e-03;
}
L_fault = L_fault/2/PI/60

This section is also evaluated using the ñevalò function. There is no actual boundary between the two sections,
since both sections can contain any JavaScript code, it is just for more convenient presentation to other users
of the black box device. The Rules (abbreviated named for Rules/Calculations) section can be left empty.
It is possible to call various script files and other external codes from this section.
The Rules section can be also disabled (Disable checkbox), in which case, the contents of the Rules text area
are ignored.

4.3.2.1 Use code from Script.User attribute
The ñUse code from Script.User attributeò allows evaluating codes saved into the device Script.User attribute.
In some cases, when the codes are not very large, it is possible to save codes into the Script.User attribute. This
allows better design portability. The codes can be edited using a separate file editor and saved back into the
Script.User attribute.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 13 of 27

4.3.2.2 Script files
It allowed to call script files from the Rules section. The contents of the Rules section can be saved in a file
called myrules.dwj (the ñ.jsò extension is also acceptable):

myrules();
function myrules(){

 with (Math){
 //limit L_fault
 if(L_fault > 90e-03) {
 L_fault= 90e-03;
 }
 L_fault = L_fault/2/PI/60;
 }
}

To call this function file from the Rules section, the user must provide the full path of the script file and parse it
using an EMTPWorks function. The contents of the Rules section become:

parseScriptFile("C:\\d\\myEMTPWScripts\\myrules.dwj");

The parseSriptFile is an EMTPWorks command for parsing the script file myrules.dwj located in the directory
"C:\d\myEMTPWScripts\ò. If the function calling method is not provided in the script file, then it is needed to call
the function separately:

parseScriptFile("C:\\d\\myEMTPWScripts\\myrules.dwj");
myrules();

If the script file path is not entered, then EMTPWorks will search existing default paths. These are named in the
EMTP.INI file (located in the EMTPWorks directory) under the header [JScript]. The last searched location is the
folder of the actual design file.
Another option is to add search paths dynamically through a JavaScript call. This can be done, for example, by
opening a new JavaScript window (File>New>JavaScript) and entering the command:

addScriptSearchPath('C:/d/myEMTPWScripts');

Push CTRL-R to run the command. This is an EMTPWorks command that puts the named directory into the
EMTPWorks search path for scripts. An extra argument specifies whether this setting should be "permanent",
i.e. the settings should be saved by the application and restored automatically each time the application is
started. If this is false, the settings remain in effect only until the application quits. Defaults to true.

The user can also call script files from the ñInitial Parameters-Values Text mode inputò section or call scripts
from scripts.

4.3.3 Variables to transmit
This section is for choosing the variables to transmit to the devices contained in the masked subcircuit. The
transmitted variables are the same as the named values (enclosed by # characters) entered into device data
fields located below the mask.
The following rules must be followed:

1. The ñVariables to transmitò must result from computations made in the previous ñInitial Parameters-
Valuesò and ñRules/Calculationsò sections.

2. It is optionally possible to automatically transmit all Parameters identified in the ñInitial Parameters-
Values: Grid mode inputò section using the checkbox ñInclude all initial parameters (from Initial
Parameters-Values grid)ò. This is in addition to those identified in the grid.

3. All selected parameters are transmitted downwards from this mask to all subnetworks and devices found
below the mask. This is valid for any number of subnetwork levels. If a parameter is modified in any
other mask located below the top mask level where it was initially defined, then the lowest level definition
takes precedence. The lowest level mask is the one closest to the device where the name value
corresponding to the parameter is used.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 14 of 27

4. The input grid can be modified and adjusted using the keyboard options listed in the Tooltip of the title
ñVariables to transmitò.

5. Important: If a variable is terminated with the underscore character ñ_ò then its contents are transmitted
directly as a string without adding/using its name. This is useful for programming masks that can access
other masks.

4.3.4 Example
The script_black_demo.ecf is presented in Figure 13. The Fault_device_ is using the ñGrid mode inputò and
ñText mode inputò options.

Figure 13 script_black_demo.ecf design (see subcircuit contents in Figure 5 and Figure 6)

The mask of Fault_device_ (ñGrid mode inputò) is presented in Figure 14. In this case, the ñText mode inputò is
not used and disabled. A simple computation is made in the Rules area.
When the user clicks OK, the contents of the ModelData attribute become:

Fault_on=0.001;
Fault_off=0.005;
Rfault=100;
Scope_of_switch='?v,?i';
PartR_on_or_off='Exclude';
L_fault=0.00023873241463784298;

This attribute is transmitted to EMTP for computations.

Masked subcircuit using the script_black_box.dwj script.
Using Text mode input for Initial Parametes-Values.

Masked subcircuit using the script_black_box.dwj script.
Using Grid mode input for Initial Parametes-Values.

+

AC11 /_90

+

RL1

10,100mH

+

C10.57uF

P

Fault_device

+

AC21 /_90

+

RL2

10,100mH

+

C20.57uF

P

Fault_device_

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 15 of 27

Figure 14 Mask of Fault_device_ using ñGrid mode inputò

The above example is presented in Figure 15 using the ñText mode inputò.
There are 3 sections in Figure 15.

Ç Initial Parameters-Values: Text mode input
The contents of the text area are:

//Switch times:
Fault_on =1e-03;
Fault_off=5e-03;
//Fault resistance:
Rfault = 100;
//Scopes in the subnetwork Fault_device
Scope_of_switch="'?v,?i'";
//Turn on the Rextra
PartR_on_or_off="'Exclude'";
//define fault inductance
L_fault=100e-03;

It is noticed that since the EMTP code expects to receive strings enclosed between quotes, the Scope_of_switch
string parameter must include the quotes using double quotes. This is not needed in the ñGrid mode inputò
option, since it able to add the double quotes automatically.

Ç Rules/Calculations

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 16 of 27

This section is for entering actual rules and calculations using the JavaScript language, such as data testing or
mathematical operations. In this example:

//limit L_fault
if(L_fault > 90e-03) {
 L_fault= 90e-03;
}
L_fault = L_fault/2/PI/60

This section is also evaluated using the ñevalò function. There is no actual boundary between the two sections
above, since both sections can contain any JavaScript code, it is just for more convenient presentation purposes.
The Rules section can be empty.

The mask of the subnetwork DEVF shown in Figure 7 is not changed in this example. It demonstrates that it is
allowed to mix different property scripts within various subnetwork levels. It is however noticed that the default
setup does not include any global data communications between script_black_box.dwj masks. Such exchanges
can be however established through more advanced programming available in EMTPWorks.

In this example, it would have also been possible to use a script_black_box.dwj for DEVF, as shown in Figure
16. It is noticed here that such a change of variables is not possible through ñGrid mode inputò since it allows
transmitting only strings and not variable names. The single quotes are used by the JavaScript ñevalò function
to create:

Rextra=Rfault;

in the ModelData attribute. It is noticed that the above statement is not needed if there is no change in variable
name or specific need, in other words, Rfault is transmitted directly downwards to all devices and can replace
targeted named values.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 17 of 27

Figure 15 Mask of Fault_device using ñGrid mode inputò

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 18 of 27

Figure 16 The script_black_box.dwj version of the mask in Figure 7

4.4 Using Global Data
On the first tab of the script_black_box.dwj device there are two options for global data usage. Global data usage
is available through a global object named oGlobalData. This object is created internally for object data fields
and methods. Some of the Simulation options, such as time-step and maximum simulation time are also
available through the global object. The user can create other variables accessed through the global object by
using the EMTPWorks menu ñDesign>Utilities>Define Global Variablesò (Global variable definition). More
documentation on the global object oGlobalData creation and usage is available in the help menu of the panel
opened when ñDesign>Utilities>Define Global Variablesò is clicked. Hereinafter the term Global variable
definition is used for global variables defined through the panel ñDesign>Utilities>Define Global Variablesò or
other top level menus, such as ñSimulate>Advanced>Simulation Optionsò.

The basic rules to remember when using oGlobalData in a script_black_box.dwj mask are:

1. To use oGlobalData the checkbox ñUse Global Dataò must be on. This allows to access oGlobalData
fields in all scripts of the mask.

2. If the script needs to continuously update all changes in oGlobalData then the checkbox ñUpdate Global
Data automaticallyò must be on. This will trigger the mask scripts automatically at every change in
oGlobalData through the Global variable definition process. The triggering will also occur before starting
the simulation and this will guarantee that all variables in all masks are up to date.

3. If the script needs to grab a variable without updating it, then ñUse Global Dataò is sufficient. This could
cause problems however when the corresponding data field is redefined due to a change in Global
variable definition.

4. Password protected device contents are not eligible for automatic updating. This means that masked
devices contained in password protected subcircuits are not automatically updated with changes in
global data. The mask of the password protected device is updated and it must perform its own internal
definition functions.

5. In the case of subcircuit devices marked as Read-Only (Lock opening subcircuit selected from right-
click menu Properties) the updating permission for device contents is optional (see Options tab below).

6. A given mask may also define (add) new data fields in oGlobalData, but this is not a standard procedure
since there will be no automatic updating in other masks and the order of updating through the Global
variable definition process is not predictable.

7. If the used global object oGlobalData field is not defined, then it will be given the value ñundefinedò.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 19 of 27

8. Documentation on built-in variables is available in the Help section of ñDesign>Utilities>Define Global
Variablesò. When the design is opened after saving, the Global variable definition process is
automatically started, but the device masks are not triggered since their data has been already
established before saving the design.

A simple example of global data usage is shown in Figure 17. The contents of the mask for the device named
Fault are used to define switch closing and opening times for the switch contained in the subcircuit of the device.
The mask is using two global variables defined in the menu ñDesign>Utilties>Define Global Variablesò shown in
Figure 18. The global variables are defined before using them in the mask.

Figure 17 Global data usage example (global_data.ecf)

+ 69kVRMSLL /_0

AC1

+

22.61

 R1

k
tclose=0.001;
topen=0.05;

Fault

+

1
9

.7
2

m
H

?
v
i

L
1

+

1
m

R

2

+
SW1

#tclose#|#topen#|0
k

m

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 20 of 27

Figure 18 Definition of Global data using ñDesign>Utilities>Define Global Variablesò

4.5 Options
The second tab of the mask data web is used to define various options. The default version of this tab is shown
in Figure 19. The user can use tooltips to get quick indications on the presented options. The available options
are:

1. Copy Mask Data: If this option is checked, the data entered on the previous tab will be copied to other
devices using the scope and criteria below. The copy is performed only for devices with the same mask
script. The copy is performed only when the user clicks OK. This option is useful for maintaining data in
similar masked devices. When this option is checked, the user is offered the choice of ñConfirm Copy
actionò for each device. The ñCopy scopeò offers the selection of design scope for applying the copy
action. The ñCopy criteria attributeò is a method for selecting the targeted masked devices to which the
copy action is performed.

2. Force Copy to Read-Only subcircuits: When this option is selected, the Copy Mask Data action is
allowed to be performed on devices contained in Read-Only subcircuits.

3. Accept global data update in Read-Only subcircuits: This checkbox is related to granting permission
for updating global data (explained above) in masks for devices contained in Read-Only subcircuits.

4. Hide 'Initial Parameters-Values Text mode input area' section: Selecting this option will hide the
indicated section in the previous data tab. This is useful if the entered data does not require changes
from the user and offers some protection. This option takes effect only after clicking OK.

5. Hide óRules/Calculations' area: Selecting this option will hide the ñRules/Calculationsò section of the
previous data tab. This is useful if the entered data does not require changes from the user and offers
some protection. This option takes effect only after clicking OK.

6. Hide óVariable to transmitô section: Selecting this option will hide the ñVariables to transmitò section of
the previous data tab. This is useful if the entered data does not require changes from the user and
offers some protection. This option takes effect only after clicking OK.

7. User title for this device: Specify a title that will appear instead of the default title shown on the previous
tab. Enable this field by clicking on its checkbox. The field is disabled by default.

8. User Help tab for this device: There are two options. The ñRoot location for the help HTML fileò and
the ñHelp HTML fileò. The objective is to change the contents of the default Help tab by replacing it with
the Help documents of the masked device.

a. The Root location allows specifying a folder located in a folder below the current script location.
This is normally "C:\Program Files\EMTPWorks\Info Scripts\". It can be left empty.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 21 of 27

b. The ñHelp HTML fileò is the actual HTML file with its own internal links.

An example of Help tab customization is given by the built-in device ñi(t) 3-phase probeò available in the
ñmeters.clfò library. This Options tab of this device is using ñmetersò for the Root location and
ñi_3ph_probe/help.htmò for actual Help file. This means that the complete file location is resolved into:
"C:\Program Files (x86)\EMTPWorks\Info Scripts\meters\ i_3ph_probe/help.htm".

Figure 19 Tab Options for script_black_box.dwj with ñCopy Mask Dataò selection

4.6 Unmasking
The rules are identical to those for the ñblack_box.dwjò script given above.

5 Advanced scripting
In addition to the standard JavaScript, EMTPWorks provides a large set of methods available through JavaScript
codes for exchanging and setting data for various tasks. It is feasible to create advanced masks, such as the
one shown in Figure 20. It is a combination of JavaScript code with special EMTPWorks methods and DHTML
data forms. The number of options and possibilities is very high. Users can study the script ñyy_info.dwjò located
in the directory ñInfo Scripts\branchesò.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 22 of 27

Figure 20 Advanced mask for the transformer of Figure 9

5.1 Scripting methods
To create advanced masks you must learn the JavaScript language and DHTML (Dynamic HTML). The required
level of knowledge can be minimal in most cases. You can also reuse and modify existing scripts.
The EMTPWorks architecture is shown in Figure 21. The bottom layer is programmed using C/C++. The
intermediate layer is an exchange layer programmed in EMTPWorks extended JavaScript. The JavaScript
language is extended with a large set of EMTPWorks methods (see electronic documentation ñJavaScript based
scriptingò). In addition to providing a library of useful programming functions, this layer allows modifying device
attributes in EMTPworks. Although any extension can be used, the standard approach is to use files with the
extension ñdwjò for the programming of this layer. This is why this layer is called the dwj-layer.
The top level can be actually based on any method callable from the dwj-layer. The standard approach is to use
again JavaScript with DHTML. Most of the EMTPWorks extensions to JavaScript are also available at this level.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 23 of 27

Figure 21 EMTPWorks architecture layers

Although the scripting methods are generic and can be used for various tasks, they are explained here in the
context of advanced mask programming methods.

5.2 Example: programming the mask of ñRLC_Load (PQ)ò
This section presents the programming of the ñRLC_Load (PQ)ò mask. The first step is to create a subcircuit
from a given circuit. The subcircuit level of ñRLC_Load (PQ)ò is shown in Figure 22.

Figure 22 The subcircuit contents of ñRLC_Load (PQ)ò

All data fields are given named values. All branches (R, L and C) are given a programmable scope variable in
the Attributes data tab. In the case of R, all three phases are set to the ñRl_scopeò variable. The same is fixed
for L and C by changing the appropriate letter.
The next (optional) step is to modify the device symbol using the Symbol Editor (ñEdit Symbolò right-click
command). If the new device is to be reused frequently in new designs then it is best to give it a significant Part
attribute and save it into a user library under a significant name. In this case this device is part of the built-in
libraries and it is saved under the name ñPQ load (RLC)ò in ñLoad Models.clfò. The chosen Part attribute is
ñRLC_Loadò. Several changes to device attributes can be made before and after saving it into its library.
Attributes can be set in the design or in the Symbol Editor.
The next change is to mask the device. This can be done using the standard masking approach available in the
right-click menu ñSubcircuit Infoò. Another approach is to modify directly the attribute Script.Open.Dev. This
attribute names the script called when the device is double-clicked. In this is case it is named rlcload_info.dwj.

Load

+

x_Cpart

#Cl#

C

+

x_Lpart

#Ll#

L

+

#Rl#

R

x_Rpart

InL

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 24 of 27

The named script must be in the search path of EMTPWorks. In this case it is located in the folder ñInfo
Scripts\branchesò which is explicitly named in the EMTP.INI file as being in the searched folder list.

The rlcload_info.dwj JavaScript code is given by:

//*This script displays a properties box for the RLC Load device type
//JavaScript based design with methods from EMTPWorks
//
//*Get this object
dev = defaultObject(); // Get the currently selected device

//*Parse all methods for this device
parseScriptFile('rlcload_m.dwj');

//*Crate the object
var oDevice = new oDevice_RLC_Load (dev);

//*Call to open the data forms of this object
oDevice.open(); //will call the save method when OK is clicked

This is a standard programming approach for all scripted-mask-subcircuit devices available in EMTPWorks. In
a future release this approach will be propagated to all devices including non subcircuit based (primitive) devices.
The first statement calls the EMTPWorks function defaultObject to retrieve the device object. The second
statement parses all methods of this device. The methods file of the device contains a standardized set of
functions. The device object holds its data and provides its methods. The currently standardized set of object
fields is:

Ç Various data fields as documented for each device. These fields provide access to all user modifiable
data for the device. They area initialized from the data originally entered into the device data forms. All
devices are initialized.

Ç SaveData: the method for saving data into device attributes. Saved data is transmitted into the Netlist.
Ç open: the method for opening the device data forms. This is similar to double-clicking on the device.
Ç dev: holds the device object handle in the design.
Ç ExportDev: initialized to dev. This field can be used to change the device into which the SaveData

method is saving data. This is useful for exporting the device mask to an upper level.
Ç SaveFormData: initialized to true, used to cancel saving data into data forms.

In the code lines shown above, the device is initialized by calling its object creation method oDevice_ and then
it is opened by calling the open method. If the user makes changes into data forms and clicks OK, then the open
method will automatically call the SaveData method.

The contents of rlcload_m.dwj are self-explanatory. The programming of such a script can use a minimal
programming effort to become functional. A more complete code is designed to account for the complete set of
programming and standardization rules available in EMTPWorks. It is for making the device into the list of
standardized built-in and redistributable devices.
It is noticed that the name of the methods file is always derived from the actual Script.Open.Dev attribute by
starting from the root name (ñrlcloadò in this case) and appending the string ñ_mò.

5.3 Masking subcircuits with scripted-mask-subcircuits
In some cases it may be necessary to mask a subcircuit that contains one or more scripted-mask-subcircuits.
Since all entered data in a scripted-mask-subcircuit is completely determined when the OK button is clicked, it
is not possible to use named values assigned at a higher level. In the example of Figure 23, DEV1 and DEV2
are identical (function ñtopò) subcircuits containing an ñRLC_Load (PQ)ò load device named ñTargetLoadò. It is
needed to mask the Part ñtopò to allow changing only the load power or any desired data set. This is achieved
through the mask shown in Figure 24.

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 25 of 27

Figure 23 Example with 2 subcircuits containing scripted-mask-subcircuits (maskload.ecf)

The actual contents of the mask section for Initial values are:

ModelData=runme();

function runme(){
mydev = defaultObject();
sub= mydev.subCircuit;
devs =sub.devices('Name','TargetLoad');

//*Parse all methods of the load
parseScriptFile('rlcload_m.dwj');

//*Create the load object
LoadData= new oDevice_RLC_Load (devs[0])

//just change power and scope
LoadData.Ppower='200';
LoadData.Rl_i_scope='?i'
//Export the mask data to this level
LoadData.ExportDev=mydev;
LoadData.SaveFormData=false; //do not save back
LoadData.SaveData()
return ModelData=mydev.getAttribute('ModelData');
}

Bold characters are used to highlight JavaScript functions provided by EMTPWorks. Notes:
Ç The ñmydevò object is the handle to the double-clicked device, in this case DEV1.
Ç The array devs is used to find the target object (device), named ñTargetLoadò
Ç The methods of target ññRLC_Load (PQ)ò are parsed using its methods script.
Ç The object LoadData is created using the target device handle devs[0] and holds all the data fields and

methods of the target device. The data fields can be found in the target device documentation. All data
fields are initialized from the existing data already entered into the device.

Ç The next statement changes the load power to 200. The units are not changed and remain MW.
Ç The next statement turns on the Resistance current scope.
Ç Since the mask of the target device must be exported to the level of the top device, it is needed to set

the ExportDev field to mydev.
Ç SaveFormData is turned off, since we do not want the changes to appear in the target device which is

being used also by DEV2. This ensures that the mask of DEV2 also starts from initial values of the target
device.

Ç The SaveData method is called to calculate and save the target device data into mydev attribute
ModelData, which is then retrieved and sent out from the function.

In the rules section the variable Model_Data_ is simply set to ModelData. The last underscore appearing in the
name of the transmitted variable is important, it is a code indicating that the variable contents (string) must be
sent directly without including its name.

p

Part=top

DEV1+

120kV /_0

?i

AC1

p

Part=top

DEV2

EMTP-EMTPWorks, 8/14/2017 1:48:00 PM Page 26 of 27

The same mask is used for DEV2, only now it can set different data fields and data values without affecting
DEV1 and its contents.
In a more complex case, the search and retrieval of the target device may require more sophistication since it
may appear anywhere in the subcircuit hierarchy. In this code it is simply searched from the current level:

sub= mydev.subCircuit;
devs =sub.devices(512,-1,5,'Name','TargetLoad'); //512 is a filter code, -1 means no restrictions, 5 is the scope: here down

It is important to give the target device a unique name, to avoid for possible finding and mixing more than one
device in a complicated hierarchical case.

The mask of Figure 24 is not restrictive, it can be used to mask other devices appearing in its subcircuit. In other
words it can be used to set other named values or scripted-mask-subcircuits. Several different functions can be
called from the ñInitial valuesò section and other variables can be transmitted. In the example of Figure 24, an
extra variable Lfixed is sending data for an inductance appearing in the subcircuit.

Figure 24 Scripted mask for subcircuit DEV1 in Figure 23

