## Meter: 3-phase to sequence $x, y$



## 3-ph to seq

Meter: 3-phase to sequence $x, y$. ..... 1
1 Description ..... 1
1.1 Pins ..... 1
1.2 Parameters ..... 1
1.3 Input. ..... 2
1.4 Output ..... 2

## 1 Description

This device converts the first harmonic of the instantaneous value of 3 phase signals to the ( $x, y$ ) coordinates of the corresponding zero-, positive-, and negative-sequence phasors in a reference frame rotating at the fundamental frequency.

### 1.1 Pins

This meter has nine pins:

| pin | type | description | units |
| :---: | :---: | :---: | :---: |
| a | input pin | phase-a input signal | any |
| b | input pin | phase-b input signal | same as a |
| c | input pin | phase-c input signal | same as a |
| zero_x | output pin | x-coordinate of zero-sequence phasor | same as a |
| zero_y | output pin | y-coordinate of zero-sequence phasor | same as a |
| pos_x | output pin | x-coordinate of pos-sequence phasor | same as a |
| pos_y | output pin | y-coordinate of pos-sequence phasor | same as a |
| neg_x | output pin | x-coordinate of neg-sequence phasor | same as a |
| neg_y | output pin | y-coordinate of neg-sequence phasor | same as a |

### 1.2 Parameters

The following parameter must be defined:

| parameter | description | units |
| :---: | :---: | :---: |
| freq | fundamental frequency of the input signal | Hz |

### 1.3 Input

The input pins may be connected to any control signals.
The 3 signals are the instantaneous values of a 3-phase quantity.

### 1.4 Output

The outputs are the ( $\mathrm{x}, \mathrm{y}$ ) phasor representation of the zero-, positive-, and negative-sequence transformations of the instantaneous values of the 3 -phase input signals. The ( $x, y$ ) coordinates are the $x$-axis and $y$-axis projections of the phasors on a reference frame rotating at the fundamental frequency.
The ( $\mathrm{x}, \mathrm{y}$ ) coordinates of the phasors in that reference frame are calculated over a sliding time window of period equal to $1 /$ freq, as follows.
The ( $\mathrm{x}, \mathrm{y}$ ) coordinates of the first harmonic of each input signal $k$ are calculated as

$$
\begin{align*}
& x_{k}=\frac{2}{\text { period }} \cdot \int_{t-\text { period }}^{t} i n_{k}(t) \cdot \cos (2 \pi \cdot \text { freq } \cdot t) \cdot d t  \tag{1}\\
& y_{k}=\frac{2}{\text { period }} \cdot \int_{t-\text { period }}^{t}-i n_{k}(t) \cdot \sin (2 \pi \cdot \text { freq } \cdot t) \cdot d t
\end{align*}
$$

where the negative sign for $y$ follows the engineering convention for an inductive (lagging) current to have a negative angle when phasor rotation is counterclockwise.
The ( $\mathrm{x}, \mathrm{y}$ ) coordinates of the zero-sequence transformation are calculated as

$$
\begin{align*}
& \text { seq0_ } \mathrm{x}=\frac{1}{3} \cdot\left(\mathrm{x}_{\mathrm{a}}+\mathrm{x}_{\mathrm{b}}+\mathrm{x}_{\mathrm{c}}\right) \\
& \text { seq0_y }=\frac{1}{3} \cdot\left(\mathrm{y}_{\mathrm{a}}+\mathrm{y}_{\mathrm{b}}+\mathrm{y}_{\mathrm{c}}\right) \tag{2}
\end{align*}
$$

The ( $\mathrm{x}, \mathrm{y}$ ) coordinates of the positive-sequence transformation are calculated as

$$
\begin{align*}
& \text { seq1_ } x=\frac{1}{3} \cdot\left(x_{a}+r x_{b}+r^{2} x_{c}\right)  \tag{3}\\
& \text { seq1_ } y=\frac{1}{3} \cdot\left(y_{a}+r y_{b}+r^{2} y_{c}\right)
\end{align*}
$$

The ( $\mathrm{x}, \mathrm{y}$ ) coordinates of the negative-sequence transformation are calculated as

$$
\begin{align*}
& \text { seq2_ } x=\frac{1}{3} \cdot\left(x_{a}+r^{2} x_{b}+r x_{c}\right) \\
& \text { seq2_ } y=\frac{1}{3} \cdot\left(y_{a}+r^{2} y_{b}+r y_{c}\right) \tag{4}
\end{align*}
$$

where $r$ represents a phasor rotation of $2 \pi / 3$, and $r^{2}$ a rotation of $4 \pi / 3$.

