Meter : 3-phase to positive sequence polar

Meter : 3-phase to positive sequence polar 1
1 Description 1
1.1 Pins 1
1.2 Parameters 1
1.3 Input 1
1.4 Output 1

1 Description

This device converts the first harmonic of the instantaneous value of 3 phase signals to the polar coordinates of the corresponding positive-sequence phasor in a reference frame rotating at the fundamental frequency.

1.1 Pins

This meter has five pins:

pin	description		units
a	input pin	phase-a input signal	any
b	input pin	phase-b input signal	same as a
c	input pin	phase-c input signal	same as a
mag	output pin	magnitude of pos-sequence phasor	same as a
rad	output pin	angle of pos-sequence phasor	rad

1.2 Parameters

The following parameter must be defined:

parameter	description	units
freq	fundamental frequency of the input signal	Hz

1.3 Input

The input pins may be connected to any control signals.
The 3 signals are the instantaneous values of a 3-phase quantity.

1.4 Output

The output is the polar phasor representation of the positive-sequence transformation of the instantaneous values of the 3-phase input signals. The polar coordinates are the magnitude and angle of that phasor in a reference frame rotating at the fundamental frequency.
The coordinates of the phasor in that reference frame are calculated over a sliding time window of period equal to $1 / f r e q$, as follows.
The (x, y) coordinates of the first harmonic of each input signal k are calculated as

$$
\begin{align*}
& x_{k}=\frac{2}{\text { period }} \cdot \int_{t-\text { period }}^{t} \operatorname{in}(t) \cdot \cos (2 \pi \cdot \text { freq } \cdot t) \cdot d t \tag{1}\\
& y_{k}=\frac{2}{\text { period }} \cdot \int_{t-\text { period }}^{t}-i n(t) \cdot \sin (2 \pi \cdot \text { freq } \cdot t) \cdot d t
\end{align*}
$$

where the negative sign for y follows the engineering convention for an inductive (lagging) current to have a negative angle when phasor rotation is counterclockwise.
The (x, y) coordinates of the positive-sequence transformation are calculated as

$$
\begin{align*}
& \operatorname{seq} 1 _x=\frac{1}{3} \cdot\left(x_{a}+r x_{b}+r^{2} x_{c}\right) \\
& \text { seq1 } y=\frac{1}{3} \cdot\left(y_{a}+r y_{b}+r^{2} y_{c}\right) \tag{2}
\end{align*}
$$

where r represents a phasor rotation of $2 \pi / 3$, and r^{2} a rotation of $4 \pi / 3$.
The conversion to polar coordinates is calculated as

$$
\begin{array}{ll}
\text { magnitude } & =\sqrt{\operatorname{seq} 1 _x^{2}+\operatorname{seq} 1 _y^{2}} \\
\text { angle } & =\tan ^{-1}\left(\frac{\operatorname{seq} 1 _y}{\operatorname{seq} 1 _x}\right) \tag{3}
\end{array}
$$

The phasor magnitude is the peak amplitude, not the RMS value. The phasor angle is expressed in radians.

