Description of Mass parameters		
Parameter	Description	Units
Mass index i	Mass index number (automatically provided)	
	Fraction (%) of the total external mechanical torque which is associated with the given mass. If the total is greater than 100% a scaling factor will be applied.	%
Moment of inertia	Moment of inertia of mass number i.	kgm ² /rad
deviation damping	The speed deviation (DSR) self-damping coefficient for the given mass. By definition: $ T_i = DSR \bullet (\omega_i - \omega_S) $ where T_i is the particular damping torque for mass i, ω_i is the angular velocity of mass i, and ω_S is the synchronous mechanical velocity of this shaft system.	Nms/rad
Mutual damping	The mutual damping coefficient (DSM) pertains to the selected mass (i) and the next mass (i+1). The damping is a function of the velocity difference between the two masses: $T_i = DSM \bullet (\omega_i - \omega_{i+1})$ where T_i is the particular damping torque between the two masses.	Nms/rad
Spring constant	The spring constant (HSP) pertains to the elastic connection between the selected mass (i) and the next mass (i+1).	Nm/rad
Absolute speed damping	The absolute speed self-damping coefficient (DSD) of the selected mass. By definition: $ T_i = DSD \bullet \omega_i $ where T_i is the particular damping torque for mass i.	Nms/rad

Unit conversion notes

If original data is available in Millions-pound-feet² the conversion factor to kgm² is: 4.21401100938e+004

If original data is available in pound-feet the conversion factor to Nm is 1.35581795