

EMTP Europe User Conference - June 21st, 2019 - Perpignan

Influence of HVDC control on the transient stability of synchronous machine

François Xavier KENGNE Pierre RAULT

1. STUDY BACKGROUND

2. SWEEPING TOOLBOX FOR TRANSIENT STABILITY ANALYSES

3. GENERIC STUDY ON THE SIMPLE BENCHMARK

4. APPLICATION ON A FRENCH NETWORK REALISTIC SITUATION

5. CONCLUSIONS

Study background

Network evolution

THE SHARE OF PED* IS INCREASING IN THE NETWORK

- More and more HVDC interconnections
- Increase of PE based renewable energy (Wind + Solar)
- Storage

PEDS AFFECT THE BEHAVIOUR OF THE POWER SYSTEM DURING TRANSIENT.

WHAT IS THE IMPACT ON SYNCHRONOUS MACHINE?

Transient stability analysis with SM and HVDC - RTE - EMTP-RV user conference - Perpignan 2019

* PED: Power Electronic Devices

Study background

North of France – Power System is moving

Study background

Determination of δ_{cr}

Study background

Grid Code: FRT control functions

Negative sequence current

 Positive sequence reactive current is injected to support the positive sequence voltage

 Negative sequence current is injected to reduce negative sequence voltage

Illustration with the EMTP example

> Example 1: find the critical clearing time for a simple case

Transient stability analysis with SM and HVDC-RTE-EMTP-RV user conference - Perpignan 2019

Configuration of the sweeping parameter mask

Find stability criteria

Stability

criteria

Normalized mechanical angle of the turbine-generator set (rotor shaft vs stator)

Simulation results

Simulation results

Fault duration Low limit : 0.3109375 s High limit : 0,31796875 s

Fault_duration: Low limit: 0.3109375 High limit: 0.31796875

SM active power

Substation positive voltage

Parametric case

Para

Sw eep_faultduration sw eep_LF_Psm sw eep_Fault_Loc					
Fault_ouration: Low limit: 0.40234375					
High limit: 0.409375					
Parameter sweeps supervisor Help					
Selection of Parameter sweep devices					
+ Add Parameter sweep device v to the tree.					
Start the study after clicking on OK button					
Add selected Remove last Pair with last					
← → sweep_LF_Psm					
$\leftarrow \rightarrow \rightarrow \Rightarrow sweep_Fault_Loc$					
$\leftarrow \rightarrow \rightarrow \rightarrow \text{bweeb-janitoriation}$					
Number of simulations: 108					

Parametric case

LF_P [MW]	Fault Loc [%]	Critical clearing time [s]
100	1	0.452
100	20	0.585
100	50	
100	80	
120	1	0.381
120	20	0.487
120	50	0.726
120	80	0.789
140	1	0.332
140	20	0.402
140	50	0.543
140	80	0.557

Study on a benchmark for transient stability with HVDC

HVDC Link

MMC characteristics				
Converter type	MMC / symetrical monopolar			
Rated power	1050 MVA			
AC voltage	400 kV			
Frequency	50 Hz			
Converter bus voltage	320 kV			
DC voltage	±320 kV			
Number of SM	400			

MMC characteristics				
Transformer leakage reactor	0.18 pu			
Arm reactor	0.15 pu			
SM energy	33 kJ/MVA			

Cigre TB604: "Guide for the Development of Models for HVDC Converters in a HVDC Grid", 2014

HVDC Link – reactive current support

[1] S. Beckler et al "On Dynamic Performance Analysis for MMC-HVDC Systems during AC faults", Cigre symposium, Aalborg, 2019 Transient stability analysis with SM and HVDC-RTE-EMTP-RV user conference-Perpignan 2019

Phase to phase faults

Transient stability analysis with SM and HVDC - RTE - EMTP-RV user conference - Perpignan 2019

20

Study on the northern France Network

Study on the northern France network

Objective: "Evaluate the impact of HVDC project on existing power plant stability"

EMTP Model:

- One part of the 400 et 225 kV are modelled
- 4 Thevenin equivalent represent the rest of the network.
- The HVDC is connected at different locations according to the current projects
- The HVDC inject the maximum power into the AC grid
- Faults is simulated at different substation or line with protection relay activation

[2] H. Saad et al, "AC Fault dynamic studies of islanded grid Including HVDC links operating in VF-control", IET ACDC, Coventry, 2019

Study on the Northern France network

3-phase fault

Voltage at the HVDC point of common coupling

Study on the Northern France network

3-phase fault

HVDC	reactive current support	Reactive controller of the HVDC	Critical clearing time
No HVDC	-	-	0.21 s
With HVDC	NO	Q control	0.212 s
		Vac control	0.25 s
	YES	Q control	0.256 s
		Vac control	0.269 s

> For balanced fault, injection of positive reactive current improve slightly the stability

Conclusions

Transient stability studies with HVDC and Synchronous Machines

- Realistic synchronous machine data and control
- Accurate modelling in EMT tool
- Detail MMC-HVDC with sequence control
- Investigation on the different FRT strategy and parameters

Preliminary results

- VSC-HVDC does not deteriorate the transient stability of SMs
- Positive reactive current support improve slightly the transient stability
- Negative current support might slightly degrade the transient stability

Perspectives

Analyse the impact of temporary valve blocking

Thanks for your attention

pierre.rault@rte-france.com