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Study background
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THE SHARE OF PED* IS INCREASING IN THE NETWORK

- More and more HVDC interconnections

- Increase of PE based renewable energy (Wind + Solar)

- Storage

PEDS AFFECT THE BEHAVIOUR OF THE POWER SYSTEM 
DURING TRANSIENT.

WHAT IS THE IMPACT ON SYNCHRONOUS MACHINE?

Study background

Network evolution
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Study background

North of France – Power System is moving

Eleclink

IFA2
FAB
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Study background
Determination of 𝛿𝑐𝑟

𝑃𝑚 Mechanical power of the turbine (p.u.), before the fault

𝑃𝑒,𝑑𝑒𝑓

 Electrical power (p.u.) during the fault

 𝑃𝑒,𝑑𝑒𝑓 =
3 𝐸′ 𝑉𝑏𝑢𝑠 𝑒𝑞 𝑑𝑒𝑓

𝑍𝑒𝑞,𝑑𝑒𝑓
𝑠𝑖𝑛𝛿

𝑃𝑒,𝑎𝑝

 Electrical power after the fault (p.u.) after the fault
clearance

 𝑃𝑒,𝑎𝑝 =
3 𝐸′ 𝑉𝑏𝑢𝑠 𝑒𝑞 𝑎𝑝

𝑍𝑒𝑞,𝑎𝑝
𝑠𝑖𝑛𝛿

𝐴𝑎𝑐𝑐 Speed up Area

𝐴𝑑é𝑐 Speed down Area

𝛿0 Angle of the SM before the fault

𝛿𝑚 Maximal angle at the fault clearance

 Illustration of the area theory

 The critical clearing time = stability limit

• 𝐴𝑎𝑐𝑐 = 𝐴𝑑𝑒𝑐

• 𝛿𝑚 = 𝜋 − 𝛿0
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Study background

Grid Code: FRT control functions

U (pu)

𝛥Iq (pu)

DB+

DB- ΔU+

ΔU-

DB2+

ΔU2+

U2 (pu)

Iq2 (pu)

Iq2- (pu)

Positive sequence current Negative sequence current

 Positive sequence reactive current is
injected to support the positive
sequence voltage

 Negative sequence current is injected
to reduce negative sequence voltage
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Transient stability analyses - Sweeping 

toolbox
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Transient stability analyses - Sweeping toolbox

Illustration with the EMTP example
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Tfault  = 0.3 s

Fault_Loc  = 99 %

PI2
meas1

Tclose  = -1 s

Topen  = 0.61796875 s
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 Example 1: find the critical clearing time for a simple case

Synchronous machine 
14.7 kV
175 MVA
AVR + Governor

2 overhead lines in parallel (0.19 H / 3.75Ω )
 Load (100 MW 50 Mvar)
Reactor (7 H)
Network equivalent (25 GVA)

D=oGlobalData.Fault_Loc // fault location in %

Tfault = oGlobalData.Tfault // Fault instant

tfault = oGlobalData.Tfault; //s

Fault_duration = oGlobalData.Fault_duration //s
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Transient stability analyses - Sweeping toolbox

Configuration of the sweeping parameter mask

Test

Fault_duration: 
Low limit: 0.3109375 
High limit: 0.31796875

batch1

Name of the global variable to be 
updated (fault duration)

Define limits
Low limit: SM is stable
High  limit: SM is unstable

Convergence criterion

Choose Bisection as optimisation method
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Transient stability analyses - Sweeping toolbox

Find stability criteria

Test

Fault_duration: 
Low limit: 0.3109375 
High limit: 0.31796875

batch1

Stability 
criteria
(Binary)

Normalized mechanical angle of the turbine-generator set (rotor shaft vs stator)

Stability threshold

2π

Teta_1

conv

div

Stability _criteria

STOP
SimStop1

0.5

STOP

SimStop2
0.5

Test

Fault_duration: 

Low limit: 0.3109375 

High limit: 0.31796875

batch1

PageTeta_1

x:

y
y:

x T1dly T2dly

T1dly = 1 s

T2dly = 100 s

Activ _dly 2
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Transient stability analyses - Sweeping toolbox

Simulation results

Simulation n°
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Transient stability analyses - Sweeping toolbox

Simulation results

SM active power Substation positive voltage

Δ𝑡𝑐𝑟 = 0.31796875

Δ𝑡𝑐𝑟 = 0.3109375

Test

Fault_duration: 
Low limit: 0.3109375 
High limit: 0.31796875

batch1

Fault duration
𝐿𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 : 0.3109375 s
𝐻𝑖𝑔ℎ 𝑙𝑖𝑚𝑖𝑡 : 0,31796875 𝑠
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Transient stability analyses - Sweeping toolbox

Parametric case

Test

Sw eep_faultduration

Fault_duration: 

Low  limit: 0.40234375 

High limit: 0.409375

sw eep_LF_Psm

Parameter sweeps supervisor

sw eep_Fault_Loc

Simple 
test

Fault
location

1 %

20 %

50 %

80 %

SM power

100 MW

120 MW

140 MW
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Transient stability analyses - Sweeping toolbox

Parametric case

Transient stability analysis with SM and HVDC -RTE -EMTP-RV user conference -Perpignan 2019

LF_P 

[MW]

Fault Loc [%] Critical clearing 

time [s]

100 1 0.452

100 20 0.585

100 50

100 80

120 1 0.381

120 20 0.487

120 50 0.726

120 80 0.789

140 1 0.332

140 20 0.402

140 50 0.543

140 80 0.557



Study on a benchmark for 
transient stability with HVDC
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Z0/Z1 = 1.2 
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Benchmark for transient stability with HVDC

Benchmark description - EMTP

SM

20kV

1650MVA

PVbus:LF2

?m

SM2Transient stability analysis with SM and HVDC -RTE -EMTP-RV user conference -Perpignan 2019
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Benchmark for transient stability with HVDC

HVDC Link

P1

N1

P2

N2

Cable_70km1MMC

v1

MMC1

S = 1050 MVA;
Vac = 400 kVRMSLL;
Vdc = 640 kV

MMC

v1

MMC2

S = 1050 MVA;
Vac = 400 kVRMSLL;
Vdc = 640 kV

MMC characteristics

Converter type MMC / symetrical monopolar

Rated power 1050 MVA

AC voltage 400 kV

Frequency 50 Hz

Converter bus 
voltage

320 kV

DC voltage ±320 kV

Number of SM 400

MMC characteristics

Transformer leakage reactor 0.18 pu

Arm reactor 0.15 pu

SM energy 33 kJ/MVA

Cigre TB604: ”Guide for the Development 
of Models for HVDC Converters in a HVDC 
Grid”, 2014 
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Benchmark for transient stability with HVDC

HVDC Link – reactive current support

Cigre B4-70: "Guide for electromagnetic 
transient studies involving VSC converters"

Positive current support

Negative current support

[1] S. Beckler et al “On Dynamic Performance Analysis for MMC-HVDC Systems during AC faults”, Cigre
symposium, Aalborg, 2019
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Benchmark for transient stability with HVDC

Phase to phase faults

Vctrl

Vctrl + Δiq+ + Δiq- (priority Δiq-)

Vctrl + Δiq+ + Δiq- (priority Δiq+)

Vctrl + Δiq+

Vctrl
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Voltage at the HVDC point of common coupling
Fault type

Remaining 

voltage (%)
Control

Critical clearing 

time (s)

2-phase

0%

Vctrl 0.346 s

Vctrl + Δiq+ 0.402s

Vctrl + Δiq+ + Δiq-

(priority Δiq-)
0.275 s

Vctrl + Δiq+ + Δiq-

(priority Δiq+)
0.312 s

10%

Vctrl 0.402 s
Vctrl + Δiq+ 0.487 s

Vctrl + Δiq+ + Δiq-

(priority Δiq-)
0.346 s

Vctrl + Δiq+ + Δiq-

(priority Δiq+)
0.393 s

20%

Vctrl 0.493 s
Vctrl + Δiq+ 0.606 s

Vctrl + Δiq+ + Δiq-

(priority Δiq-)
0.451 s

Vctrl + Δiq+ + Δiq-

(priority Δiq+)
0.493 s
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 For unbalanced fault, injection of negative reactive 

current deteriorate slightly the transient stability



Study on the northern France 
Network
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Study on the northern France network

Objective: “Evaluate the impact of HVDC project on existing power plant stability”

EMTP Model:

 One part of the 400 et 225 kV are modelled

 4 Thevenin equivalent represent the rest of the network

 The HVDC is connected at different locations according to the current projects

 The HVDC inject the maximum power into the AC grid

 Faults is simulated at different substation or line with protection relay activation

[2] H. Saad et al, “AC Fault dynamic studies of islanded grid Including HVDC links operating in VF-
control”, IET ACDC, Coventry, 2019
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Study on the Northern France network
3-phase fault 

Voltage at the HVDC point of common coupling
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Study on the Northern France network
3-phase fault 

HVDC
reactive current

support
Reactive controller of the HVDC Critical clearing time

No HVDC - - 0.21 s

With HVDC

NO

Q control 0.212 s

Vac control 0.25 s

YES

Q control 0.256 s

Vac control 0.269 s
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Conclusions

Transient stability studies with HVDC and Synchronous Machines

 Realistic synchronous machine data and control

 Accurate modelling in EMT tool

 Detail MMC-HVDC with sequence control

 Investigation on the different FRT strategy and parameters

Preliminary results

 VSC-HVDC does not deteriorate the transient stability of SMs

 Positive reactive current support improve slightly the transient stability

 Negative current support might slightly degrade the transient stability

Perspectives

 Analyse the impact of temporary valve blocking
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