

Co-simulation tool for EMTP-RV

June 2013, Xavier Legrand, EDF R&D

EMTP-RV UG

Outline

Co-simulation with EMTP-RV : why ? Co-simultation tool : Example Test Case Conclusion

Electric Utility : EMTP-type modeling for transients studies:

- Electrotechnic components of the system (lines, transformers, machines, ...).
- Validated models (egs. power plants models on EMTP-RV for EDF).

• Vendors : not necessary the same code for all parts of their system:

Egs. Machine controls on Simulink, mechanical parts on dedicated codes

- Electric Utility : EMTP-Rv modeling for transients studies
- Vendors : models based on other softwares
- > How can we compute the behavior of the complete system ?

Some solutions for utilities:

Re-coding the whole into the EMTP-Rv :

- Can be long / difficult;
- Changes required for each manufacturer modification;
- Tests : no validations by the vendor;
- Need for all data (confidentiality?);
- Can be asked to the manufacturer (request for proposal).
- Only one tool is needed at the end.
- Ideal long term solution (only one solver, models added in libraries).

Some solutions for utilities:

Re-coding the whole into the EMTP-Rv :

- Can be long / difficult;
- Changes required for each manufacturer modification;
- Tests : no validations by the vendor;
- Need for all data;
- Can be asked to the manufacturer (request for proposal).
- Only one tool is needed at the end.
- Ideal long term solution (only one solver, models added in libraries).

Some solutions :

Re-coding the whole system into the EMTP-RV

- Can be long / difficult;
- Changes required for each manufacturer modification;
- Tests : no validations by the vendor;
- Need for all data (cofidentiality);
- Can be asked to the manufacturer (request for proposal).
- Only one tool is needed at the end.
- Ideal long term solution (only one solver, models added in libraries).

Black-box DLL approach

- Fast (almost direct with Simulink);
- Code compiling required for each modification (even the time-step);
- Tests : model validated by the manufacturer;
- 'Black box' : no requirement for all data.
- Controls seen as 'black boxes'.
- Only one tool is needed (EMTP).

Some solutions :

Re-coding the controls models into the EMTP-RV

- Can be long / difficult;
- Changes required for each manufacturer modification;
- Tests : no validations by the vendor;
- Need for all data;
- Can be asked to the manufacturer (request for proposal).
- Only one tool is needed at the end.
- Ideal long term solution (only one solver, models added in libraries).

Black-box DLL approach

- Fast (almost direct with Simulink);
- Code compiling required for each modification (even the time-step);
- Tests : model validated by the manufacturer;
- 'Black box' : no requirement for all data.
- Controls seen as 'black boxes'.
- Only one tool is needed (EMTP).

Some solutions :

Re-coding the controls models into the EMTP-RV

- Can be long / difficult;
- Changes required for each manufacturer modification;
- Tests : no validations by the manufacturer;
- Need for all data;
- Can be asked to the manufacturer (request for proposal).
- Only one tool is needed.
- Ideal long term solution (only one solver, controls added in libraries).

Black-box DLL approach

- Almost direct with tools like Simulink (eRTW)
- Code compiling required for each modification (even the time-step);
- Tests : model validated by the manufacturer;
- 'Black box' : no requirement for all data.
- Integrated models seen as 'black boxes'.
- Only one tool is needed.
- Some numerical challenges (egs. Nodal based codes / State space based codes).

Co-Simulation

- Almost direct with an appropriate co-simulation tool;
- All parts can be direcly modified using their orginal GUI;
- Tests : model validated by the manufacturer;
- 'White box';
- No requirement for all data (control blocks can be encripted in Simulink).
- Both tools are needed (EMTP + Simulink).
- Some numerical challenges (egs. Nodal based codes / State space based codes).
- Ideal short term solution (to test the behavior of the whole system with the vendor).

Some solutions :

Re-coding the controls models into the EMTP-RV

- Can be long / difficult;
- Changes required for each manufacturer modification;
- Tests : no validations by the manufacturer;
- Need for all data;
- Can be asked to the manufacturer (request for proposal).
- Only one tool is needed.
- Ideal long term solution (only one solver, controls added in libraries).

Black-box DLL approach

- Almost direct with tools like Simulink (eRTW)
- Code compiling required for each modification (even the time-step);
- Tests : model validated by the manufacturer;
- 'Black box' : no requirement for all data.
- Integrated models seen as 'black boxes'.
- Only one tool is needed.
- Some numerical challenges (egs. Nodal based codes / State space based codes).

Co-Simulation

- Almost direct with an appropriate co-simulation tool;
- All parts can be direcly modified using their orginal GUI;
- Tests : model validated by the manufacturer;
- 'White box';
- No requirement for all data (control blocks can be encripted in Simulink).
- Both tools are needed (EMTP + Simulink).
- Some numerical challenges (egs. Nodal based codes / State space based codes).
- Ideal short term solution (to test the behavior of the whole system with the vendor).

EDF : power plant library into EMTP-RV

- New controls for the SM
- Vendor : Simulink models for the new controls
- EMTP-RV / Simulink co-simulation

- EDF : power plant library into EMTP-RV
- New controls for the SM
- Vendor : Simulink models for the new controls
- EMTP-RV / Simulink co-simulation

- EDF : power plant library into EMTP-RV
- New controls for the SM
- Vendor : Simulink models for the new controls
- EMTP-RV / Simulink co-simulation

- EDF : power plant library into EMTP-RV
- New controls for the SM
- Vendor : Simulink models for the new controls
- \Rightarrow EMTP-RV / Simulink co-simulation using a co-simulation bus.

SPS 'Power Turbine' example

SPS 'Power Turbine' example

EDF R&D : Créer de la valeur et préparer l'avenir

eDF

SPS 'Power Turbine' example

SPS 'Power Turbine' example

control : Simulink, Slave

EMTP-RV/Simulink Co-simulation : test case

Conclusion

- Co-simulation bus (several EMTP-Rv instances, EMTP-Rv+Simulink ...).
- -Perspectives :
 - -Applications :
 - -smart grids (communication infrastructures dedicated tools)
 - -use cosimulation for paralelization
 - Devt :
 - Fmi standard;
 - Windows / Linux co-simulation;
 - Improve UI...
 - Research :
 - Advanced seynchrosim mecanisms (egs. : iterative approaches);
 - Power signal exanges. (only control signals).
 - Co-simulation with transient stability packages (phasor domain codes)..

