

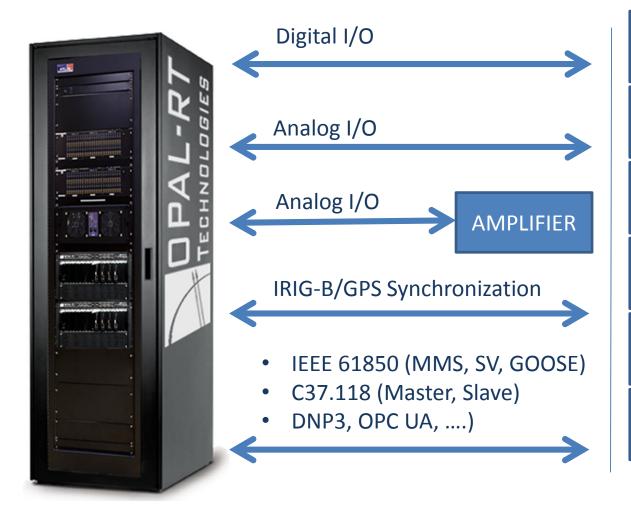
HYPERWORKS: Next generation of Real-Time Digital Simulation with EMTP-RV & HYPERSIM

EMTP-RV Users Conference New Orleans, July 8-10 2015

By:

Pierre-Francois Allaire, Sales & Marketing Director Thomas Kirk, Field Application engineer. Julie Fortin-Morin, Account Manager USA & South America

= HYPERWORKS


HYPERSIM definition

Electrical systems are complex networks of power elements such as power generation, transmission, distribution and loads. Other elements are controls systems including regulation, control and protection devices.

HYPERSIM offers to engineers and designers an extended software and hardware package designed for **Hardware-in-the-loop testing**

HYPERSIM definition

VIRTUAL POWER GRID

REAL COMPONENTS

Protection Relay

Phasor Measurement Unit

Phasor Data Concentrator

SCADA systems

FACTS,SVC MMC,HVDC Controls

Converters, Inverters

HYPERSIM origin

Hypersim is a simulation package developed for the <u>last 20 years</u> in collaboration with:

Their Power System Testing and Simulation Laboratories develop and test the validity of the models.

OPAL-RT Technologies has commercialisation license of HYPERSIM since 3 years.

Integration of renewable energies, integration of SVC & STATCOM from different suppliers, WAMS, protection relays and MMCs

ABB SVC Controller Hardware-in-the-loop at IREQ

SIEMENS SVC Controller Hardware-in-the-loop at IREQ

Research in energy efficient systems, energy conservation, power system protection, advanced motor modeling, and fault analysis.

Industrial facts

Growing Presence in US, European and Asia National research laboratories.

In the last two years, a growing presence in R&D utilities.

Important system presence at power systems manufacturers

Academic facts

Presence in more than 208 Universities in 34 countries on 5 continents:

Presence in more than 50 Universities America.

Presence in more than 50 Universities in Europe.

Presence in more than 90 Universities in Asia.

In 2014, 70 technical publication have been already written with mention of OPAL-RT systems:

Prestigious publications like I<u>EEE Transaction</u>
Most published topics are Smart Grid, Micro Grid, Renewable energy & MMC

Custom Hardware vs COTS*

"Do not let the hardware restrict your research or studies"

Equivalency Chart

Competition	Nodes	HYPERsim	RT Computer	OPAL-RT
1 Rack	150	3 cores	1 (25% use)	1 Rack
2 Racks	300	6 cores	1 (50% use)	1 Rack
4 Racks	600	12 cores	1 (100% use)	1 Rack
8 Racks	1200	24 cores	2	1 Rack
???	>5700	96 Cores	3 (SGI)	1 Rack

*OPAL-RT Use Commercial-Off-The-Shelf Computer

Туре	CPU	CORES
INTEL XEON 3.4GHz	2	8/12
INTEL XEON	2	16/32

Туре	Channels per slot	Maximum per Chassis
Digital OUT	32	256
Digital IN	32	256
Analog IN	16	128
Analog OUT	16	128

7U Standard Chassis

Туре	Channels per slot	Maximum per Chassis
Digital OUT	16	256
Digital IN	16	256
Analog IN	16	128
Analog OUT	16	128
Digital Tx/Rx Fiber Optic	8/8	128/128

