

EMTP-RV Models and Simulations of Alternate Arm Converters

GUILLAUD Xavier, Francois Gruson, Philippe Egrot & VERMEERSCH Pierre

Contact : pierre.vermeersch@edf.fr

EMTP User Conference 30/08/2022

Context of this work

The current power system is dominated by the HVAC technology.

HVDC transmission systems gain attention all over the world:

- Strengthen countries interconnexion
- Connection of remote sources (e.g. WF)

https://fr.wikipedia.org/wiki/Electricité_en_Euro

Context of this work

The Modular Multilevel Converter (MMC) \rightarrow A technological breakthrough early in the 2000's for HVDC stations

Key of this topology : Stacks of Sub-Modules (SM)

- Modular design
- Low harmonic content
- High power capability
- High efficiency
- High number of SMs/stack
- Large internal energy storage

The MMC is the leading solution for HVDC project of $\sim [0.5; 2.5]$ GW

Can the MMC be challenged ?

Context of this work

One possible answer: Hybrid modular topologies

The Alternate Arm Converter (AAC)

Claims:

- A fewer SMs compared to MMC
- Station footprint reduction (compared to MMC)
- DC-Fault blocking capability
- Low level of losses

Good candidate for HVDC offshore substations

[1] M. M. C. Merlin *et al.*, "The extended overlap alternate arm converter: A voltage-source converter with DC fault ridethrough capability and a compact design," *IEEE Trans. Power Electron.*, vol. 33, no. 5, pp. 3898–3910, 2018.

Outline

- I. Introduction to the AAC topology
- II. Models and Controllers
- III. Results in stand-alone
- IV. Performance in the power system

Recall on MMC voltage modulation principle

Each of the 6 arms <u>always</u> participates to :

- AC voltages construction
- Maintain DC voltage constant
- Keep internal energy under control

It results in:

- Smooth AC currents
- Constant DC current in any situations
- Evenly distributed energy among stacks

system

Modulation of AC voltages considering DSs

7

When an arm is 'on', the grid current is flowing into the capacitor, hence, the energy is diverging

A control of the energy has to be achieved.

Performance in the power system

The Overlap period

The 2 DS are switched on in the same time

The AAC is operating as a MMC

Increase of the number of submodules

The extended overlap period EO-AAC

The overlap period fixed to 60 degrees → Always one leg in overlap mode

in overlapp mode

In steady state the DC current constant, no need to add any filter

Performance in the power system

Stack of SMs sizing of the EO-AAC

Extended Overlap period \rightarrow Each arm conduct for 240°

Degree of freedom to act on: the zero sequence voltage injection v_{N0} (ZSVI)

With an optimal (ZSVI)

 $0,82 V_{dc} \rightarrow 0,65 \times V_{dc}$

But increase of the Director Swich (DS) $0.79 \times V_{dc}$

Conclusion on the sizing

	HB-MMC	EO-AAC
Stacks design	Vdc	$0.64 \times Vdc$
Director Switches	×	$0.79 \times V_{dc}$
Energy storage	40 kJ/MVA	13 kJ/MVA
Losses	Less than 1%	Similar

With DC Faultblocking capability

Aim of the following : Description of models and controls implemented in EMTP-RV

2 Types of model implemented in EMTP-RV (1/2)

[2] H. Saad *et al.*, "Modular multilevel converter models for electromagnetic transients," *IEEE Trans. Power Deliv.*, vol. 29, no. 3, pp. 1481–1489, 2014.

2 Types of model implemented in EMTP-RV (2/2)

To be computationally efficient and usable for larger power system studies:

- All stacks of SMs are replaced by three equivalent modulators
- Director switches effects on modulated voltages and output current are disregarded
 - \blacktriangleright Model fully continuous \rightarrow <u>suitable for classic power system stability analysis</u>

Performance in the power system

Controllers mandatory for stable operations

There is a natural energy imbalance that must be corrected. The following control has been implemented:

*For detailed models, a fifth control block would include SM capacitor voltage balancing algorithm

Correct the energy imbalance using:

- Total control
- Horizontal and Vertical balancing

Generates current references

AC and DC current controllers

Generates AC and DC modulated voltage references

3 Determines DS gating signal values

Generate modulation according to:

- 4 Modulated voltage references
 - DS Gating signal values
 - Arm capacitor voltage levels

Controllers mandatory for stable operations

Converter behaviour when connected to perfect sources

[EMT1] EO_AAC_Aug2022m - Mon Aug 29 08:08:42 CEST 2022 - C:\Users\pierre\Desktop\EMTP User Conference\EOAAC Model\EO_AAC_Aug2022_pj

Converter behaviour when connected to perfect sources

[EMT1] EO_AAC_Aug2022m - Mon Aug 29 08:35:53 CEST 2022 - C:\Users\pierre\Desktop\EMTP User Conference\EOAAC Model\EO_AAC_Aug2022_pj

Behaviour when connected to DC cables

Point to point HVDC link – 300 km of HVDC cables using wideband cable model

Checked:

- Overall system stability over large disturbance
- Mitigate the transient harmonics by appropriate DC voltage control & energy management
- Interoperation with HVDC stations like MMC

Behaviour in MTDC system

Three terminals MTDC system

General Conclusion

A global overview on:

- Extended Overlap-Alternate Arm Converter sizing modelling and simulation in EMTP-RV
- Its transient behaviour

Pro	Neutral	Con
Smaller footprint	Looses le	More complex control
Full bridge then DC voltage ride through capabitility		Unwanted oscillations during the transient
EXTP-RV The reference for power systems transients		Behaviour in case of unbalanced AC system

Hauts-de-France

UNION EUROPÉENNE

General Conclusion

Expected future works:

- More study on the behaviour in case of unbalanced application
- May be an evolution of the topology to propose

